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Abstract

This paper establishes necessary and sufficient conditions on utility functions
and output distributions for (piece-wise) linear contracts to arise in the standard
static principal-agent framework of Holmström (1979), rationalizing observed con-
tracts involving stocks or call options. I present a complete characterization of
optimal contracts for a key case: exponentially distributed output and log utility
for the agent. When the principal seeks to implement effort levels below a thresh-
old, the optimal contract is affine, consisting of a fixed wage and a constant output
share. Effort levels above this threshold are implementable, but no optimal con-
tract exists without an additional minimum-wage constraint. If such a constraint
is introduced, an optimal contract exists and is piecewise linear, consisting of a
fixed wage and a call option on output. I derive a closed-form solution for infimum
compensation cost in the unconstrained problem (without a minimum wage).
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1 Introduction

The classical static principal agent model of Holmström (1979) asserts that the likelihood

ratio of output realizations is a sufficient statistic for designing optimal compensation

contracts. Yet, as successful the informativeness principle was and is for our general un-

derstanding of optimally addressing moral hazard, the model has been criticized because

its predictions do not readily align with the simple, linear contracts often observed in

practice. In response, subsequent research either assumes linear contracts even though

they are not optimal (e.g., Holmström and Milgrom (1991), Bolton and Dewatripont
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(2004) or departs from the classical setup (e.g., Holmström and Milgrom (1987), Innes

(1990), Hébert (2017), Yang (2019), Mattsson and Weibull (2023)) to obtain optimal,

linear contracts.

This paper demonstrates that one need not abandon the Holmström (1979) framework

to obtain linear contracts as the optimal resolution of the trade-off between incentives and

insurance. I establish necessary and sufficient conditions on the agent’s utility function

and the output distribution for affine (or piecewise linear) contracts to arise and provide

conditions for existence. In particular, affine contracts emerge generically when (a) the

agent exhibits logarithmic utility and (b) output is drawn from a Gamma distribution

(with the exponential distribution as a special case). If the principal aims to induce agent

effort below a threshold, an optimal contract exists and can be implemented by paying the

agent a base wage along with a constant share of output. Effort levels above this threshold

are implementable, but an optimal compensation contract fails to exist in the absence

of an additional lower bound on pay (e.g., a minimum wage), a phenomenon analogous

to the classical, log-normal example by Mirrlees (1999). If such a constraint is imposed,

existence is ensured and the optimal contract becomes piecewise linear, consisting of a

base wage and a call option on output with a strike price that decreases with the minimum

wage. Taking the limit as the minimum wage goes to zero yields a closed-form solution

for the infimum compensation cost of the unconstrained problem (without a lower bound

on pay).

I derive these results within the standard setup of Holmström (1979) featuring a risk-

neutral principal and a risk-averse agent with additively separable preferences in con-

sumption and effort. The agent’s unobservable effort, denoted by a, generates stochastic

output x. Under regularity conditions, Holmström (1979) shows that the optimal com-

pensation schedule c(x) satisfies

1

u′ (c)
= λPC + λIC L (x| a) , (1)

where u is the agent’s utility from consumption, L (x| a) is the likelihood ratio associated

with output x given effort a, and λPC > 0 and λIC > 0 are the Lagrange multipliers

corresponding to the participation and incentive constraints, respectively. The quest

for linearity is to establish conditions so that (1) generates affine contracts regardless

of the agent outside option or effort cost function, both of which affect the Lagrange

multipliers. It is now immediate that affine contracts emerge independently of the value of

the Lagrange multipliers if and only if both the inverse marginal utility and the likelihood

ratio are themselves affine functions. Logarithmic utility ensures the former condition,
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while the Gamma distribution satisfies the latter.

Affine contracts are fully characterized by two parameters: a base wage and an output

share. Under such a contract, the agent’s expected utility is a strictly concave function

of effort, ensuring that the first-order approach holds for any convex effort cost function.1

Constant relative risk aversion implies that effort incentives of a given output share are

lowered as the base wage increases. In particular, with logarithmic utility, a sufficient

statistic for effort incentives is the ratio of the output share to the base wage. Intuitively,

higher effort requires a higher ratio, i.e., a larger variable component relative to fixed

pay. Maximal incentives under an affine contract are achieved when the principal relies

solely on variable pay (and no fixed wage). Yet, even this pure linear scheme fails to

provide sufficient incentives when the principal aims to induce sufficiently high effort.

For sufficiently high-effort, the issue is not implementability per se, but implementabil-

ity via an affine contract. For any exogenously given wage level, the principal can induce

high effort levels by making the incentive scheme more convex, e.g., by awarding an

output share only if output exceeds a cutoff, effectively offering a call option on output.

This modified contract is exactly optimal if the principal faces an additional minimum

wage constraint. The option strike price is optimally larger as the minimum wage in-

creases as to counteract the less severe punishment conditional on falling short of the

strike price. I provide a closed-form solution for compensation costs as the minimum

wage tends to zero. These costs represent the infimum compensation costs in the un-

constrained problem (without the minimum wage). Since the call option strike price

converges to zero as the minimum wage converges to zero, the resulting limiting contract

is akin to a linear scheme from the risk-neutral principal’s perspective, yet the prospect of

an infinitely severe (zero-pay) punishment, even if realized with zero probability, provides

strong incentive effects on the risk-averse agent.

I conclude the paper with the equilibrium action choice problem of the principal,

step 2 of the Grossman and Hart (1983) procedure. I show that intermediate values of

the agent’s outside option both ensure that the principal implements actions below the

existence cutoff, yielding affine contracts, and obtains positive net profits.

Literature My paper relates to two classical strands of the contract theory literature.

First, it builds on the literature on optimal linear compensation contracts, originating

from the seminal work of Holmström and Milgrom (1987). Unlike their framework,

in which linearity emerges due to repeated moral hazard and independent compensation

1The first-order approach holds even though the exponential distribution only satisfies the monotone
likelihood ratio property, but not convexity, so the validity does not follow from the sufficient conditions
established by Rogerson (1985).
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schemes over time (due to constant absolute risk aversion), this paper shows that linearity

can arise across states due to the properties of the likelihood ratio (with constant relative

risk aversion).2 To the best of my knowledge, this is the first paper to demonstrate that

linearity can emerge within the classic Holmström (1979) framework. Hence, abandoning

this foundational model—widely used in graduate studies—may not be necessary to

obtain realistic and tractable contracts.

Second, this paper relates to the literature on the existence of optimal compensation

contracts. Mirrlees (1999) demonstrated that when utility functions are unbounded (such

as for log utility) and the output distribution is log-normal, optimal contracts do not exist.

Instead, first-best compensation costs can be arbitrarily approximated by imposing severe

penalties on the agent for exceptionally low output. Müller (1999) extends this insight

by showing that the problem arises for all distribution functions for which the likelihood

ratio is unbounded below, allowing the principal to perfectly detect deviations. However,

the exponential distribution considered in this paper features a likelihood ratio that is

bounded below. Hence, most closest related is the paper by Moroni and Swinkels (2014)

who show that bounded likelihood ratios are not sufficient to ensure existence of an

optimal contract. In particular, they show that if the agent’s utility function diverges at

a finite consumption level, such as for log utility, the existence problem is severe in that

existence depends on the cost function (and the implemented effort level).3 This result

explains why an optimal affine contract only exists in my setting if the implemented

effort level is sufficiently low.

2 Model

I consider the standard, static principal-agent model à la Holmström (1979). The princi-

pal observes output signals X according to the density function f (x| a), which is param-

eterized by the agent’s action a ∈ R+. To implement an action a, the principal designs a

compensation scheme c as a function of realized output x. The principal is risk-neutral

and the agent has an additively separable utility function in consumption c and effort a,

U (c, a) = u (c)−k (a) where u (c) is strictly concave and her cost of effort k (a) is strictly

increasing and convex.

Let Ea denote the expectations operator given action a, then the minimum-cost com-

pensation contract to implement action a solves the following program:

2 In contrast to Innes (1990) and Hébert (2017), my paper considers a risk-averse agent.
3Kadan, Reny and Swinkels (2017) build on this insight and provide sufficient conditions for existence,

one which is a bound on the penalties that can be imposed on the agent.
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Problem 1

W (a) := min
c(x)

Ea [c (x)] s.t.

Ea [u (c (x))] ≥ k (a) + u. (PC)

a = arg max
ã

Eã [u (c (x))]− k (ã) . (IC)

It is customary in the literature, see Bolton and Dewatripont (2004), to assume that

the agent’s optimization problem in (IC) is characterized by a first-order condition.4

Assuming that this first-order approach holds, (IC) can be written as:

Ea [L (x| a)u (c (x))] = k′ (a) , (IC-FOC)

where L (x| a) :=
∂f(x|a)

∂a

f(x|a) denotes the continuous-action likelihood ratio. Pointwise opti-

mization, see Holmström (1979), implies that the optimal compensation contract satisfies

the fundamental optimality condition (1) highlighted in the introduction, and λPC > 0

& λIC > 0 are the respective Lagrange multipliers on (PC) and (IC-FOC). Economically,

(1) implies that the marginal cost of transferring utility to the agent is an affine function

of the likelihood ratio. As is well-known, optimality condition (1) typically generates non-

linear contracts in terms of realized output. In fact, unless the monotone likelihood ratio

property (MLRP), see Milgrom (1981), is satisfied, the optimal compensation scheme c

might not even be increasing in output x.

3 Affine contracts as optimal contracts

Since linearity in output is a prevalent feature of compensation schemes observed in the

real world (and assumed in many applied theory papers), it is thus of special interest to

determine the class of utility and probability distribution functions that generate such

contracts.

Lemma 1 The solution to (1) generates an affine (and increasing) compensation scheme

for all values of the agent outside option u and cost functions k (a), if and only if the

following two conditions are satisfied.

1. The agent has generalized log utility u (c) = ln (c− c) for some constant c, and

4Rogerson (1985) and Jewitt (1988) provide conditions for the validity of this approach.
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2. the probability density function, f (x| a), can be factorized as follows:

f (x| a) = κ (a) z (x) e−δ(a)x, (2)

for positive-valued functions κ (a) and z (x). δ′ (a) < 0 ensures that the compensa-

tion scheme is strictly increasing in x.

These two conditions are sufficient as they imply that the inverse marginal utility,
1

u′(c)
is affine in consumption, and the likelihood ratio is affine in output as L (x| a) =

κ′(a)
κ(a)

− δ′ (a)x while δ′ (a) < 0 ensures the monotone likelihood ratio property. These

conditions are also necessary to guarantee that affine contracts emerge independently of

the values of the Lagrange multipliers λPK and λIC which encode the agent outside u

and effort cost function k (a).5

Corollary 1 The Gamma-distribution family satisfies Condition (2) with κ (a) = a−η

Γ(η)
,

z (x) = xη−1 and δ (a) = 1
a
for x, η > 0.

Within this family, the exponential distribution, which is obtained by setting η = 1, is

the most prominent example in economics. In this special case, the agent action a deter-

mines mean output and positive likelihood ratios are obtained whenever realized output

exceeds the mean, i.e., L (x| a) = x−a
a2

, so that Ea [L (x| a)] = 0 and Vara [L (x| a)] = 1
a2
.

We will now fully characterize the solution to Problem 1 for the exponential distribution

and log utility, i.e., c = 0.

For any desired action a > 0, it is instructive (and without loss of generality) to

specify an affine compensation contract as follows

c (x) = w + wβ
x

a
, (3)

where x
a
is scaled output (normalized by mean output a), w ≥ refers to the fixed wage

and β ≥ 0 is the ratio of the agent’s scaled output share wβ to the fixed wage w. With

log utility, this ratio β is a sufficient statistic for incentives provided by affine contracts.

This follows from the fact that (IC-FOC) under log utility and an affine compensation

scheme (3) satisfies:

Ea
[
L (x| a) ln

(
w + wβ

x

a

)]
= Ea

[
L (x| a) ln

(
1 + β

x

a

)]
, (4)

5The qualifying statement “independently of the values of the Lagrange multipliers” rules out knife-
edge cases in which affine contracts emerge only for a particular combination of the agent’s outside
option and effort cost function.
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which uses the fact that the likelihood ratio is zero in expectation, Ea [L (x| a)] = 0.

When the parameters β and w implement action a, the principal’s expected wage costs

then satisfy

Ea [c (x)] = w (1 + β) , (5)

so that β also measures the expected percentage bonus on top of the base wage w.

Proposition 1 (Exponential Distribution) A solution to Problem 1 exists if and

only if a ≤ ā, where the threshold ā > 0 solves ak′ (a) = 1.

Let Ei (y) := −
∫∞
−y e

−tdt denote the Exponential Integral and G (y) := 1 + 1
y
e

1
y Ei

(
− 1
y

)
,

then the optimal contract parameters β∗ and w∗, see (3), to implement action a satisfy:

G (β∗) = ak′ (a) , (IC*)

lnw∗ = u+ k (a)− β∗ (1− ak′ (a)) . (PC*)

Given this contract, the first-order approach is valid for any convex cost function k (a).

In sum, for a ≤ ā we obtain a compensation contract that is affine in output x. The

optimality conditions for the contract parameters β∗ and w∗ are intuitive. The right

hand side of (IC*), ak′ (a), measures the strength of required incentives and is, hence,

intuitively increasing in the implemented action a (formally due to convexity of k). The

required incentives need to match the provided incentives by the contract on the left

hand side of (IC*), which are captured by the strictly increasing function G (β∗). Here,

G maps β∗ into [0, 1], see plot of G in Figure A.1 in the Proof of Proposition 1. Since

G (β) is bounded above by one, as limβ→∞G (β) = 1, only actions with ak′ (a) ≤ 1 are

incentive compatible under an affine compensation scheme. The base wage, see (PC*), is

then just set sufficiently high to ensure participation of the agent given her outside option

u and cost of effort k (a), where β∗ (1− ak′ (a)) > 0 measures the agent’s valuation of

the variable pay component (in utils).

The contract parameters have the following intuitive properties, see plot in Figure 1.

In this example, we set k (a) = ψ2

2
a2 so that ā = 1

ψ
.6

Proposition 2 (Comparative Statics) For a ≤ ā, the optimal percentage bonus on

the wage β∗ is strictly increasing in the implemented action a while the base wage w∗

is strictly decreasing in a. The compensation contract for the lower and upper bound is

obtained in closed form.

6The cost function determines the cutoff action ā, consistent with the results by Moroni and Swinkels
(2014). By making ψ arbitrarily small, it is possible to make ā arbitrarily large.
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Figure 1. Optimal Affine Contracts. The graph plots the optimal compensation scheme c(x)
for 3 values of a between 0 and ā. For a = ā (plotted in green), the compensation scheme is linear.
The agent outside option is u = 0 and the cost of effort satisfies k (a) = 0.5a2 so that ā = 1.

� For a = 0, the optimal contract consists only of a flat wage c (x) = w∗ = eu.

� For a = ā, the optimal contract is a pure linear contract without a fixed wage

c (x) = eu+k(ā)+γ
x

ā
, (6)

where γ ≈ 0.58 denotes the Euler-Mascheroni constant.

These comparative statics are intuitive. When no incentives need to be provided,

a = 0, the optimal second-best contract corresponds to the first-best contract consisting

only of a flat wage. The higher the action that the principal wants to implement, the

higher the required incentives, which translates into higher β. However, even in the

limit as β approaches infinity, incentives provided from a linear contract are finite as

limβ→∞G (β) = 1. At ā, the optimal compensation contract is obtained in closed-form.

The resulting second-best wage cost W (ā) = W FB (ā) eγ are 58% higher than first-best

compensation compensation costs of W FB (ā) = eu+k(ā).

Proposition 1 implies that no solution to Problem 1 exists for a > ā as no affine

compensation contract can generate sufficient incentives. However, it does not rule out

implementability with more convex compensation schemes. The following Lemma shows

that supplementing fixed pay with call options (rather than a fixed equity share) is one

way to generate sufficient convexity and implement effort levels above ā.
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Lemma 2 (Implementability with Call Options) For any exogenously given fixed

wage of w < exp [u+ k (a)], actions a > ā are implementable by additionally awarding
wβ
a

call options on output with a strike price equal to the p-quantile of the exponential

distribution Q (p| a) := −a ln[1− p]:

c (x) = w +
wβ

a
max (x−Q (p| a) , 0) . (7)

Given w, the contract parameters p∗ ∈ (0, 1) and β∗ > 0 satisfy

(1− p) (G (β)− (1−G (β)) β ln (1− p)) = ak′ (a) (IC**)

ln (w) + (1− p) (1−G (β)) β = u+ k (a) (PC**)

The sole goal of Lemma 2 is show implementability of high effort levels. We defer the

question of optimality, when and whether the principal would ever choose such a contract

to the subsequent Proposition 3. Recall that the key constraint for implementability

with affine contracts was incentive compatibility. Without restricting attention to affine

incentives schemes, one way to satisfy (IC-FOC), Ea [L (x| a)u (c (x))] = k′ (a), is to

simply punish the agent sufficiently for negative likelihood ratios. Log utility implies

that paying the agent close to the subsistence level of zero, allows the principal to punish

the agent sufficiently. For the set of compensation contracts described in Lemma 2, the

“punishment” occurs with probability p and corresponds to only paying a (sufficiently

low) base wage w < exp [u+ k (a)] as long as output falls below the p-quantile Q (p, a).

To see how (IC**) can now be satisfied, it is instructive to consider a first-order Taylor-

series expansion about p = 0, which yields

(1− p)G (β) + p (1−G (β)) β ≈ ak′ (a) . (8)

For p = 0, we obtain the baseline incentive compatibility condition (IC*), i.e., G (β) =

ak′ (a). However, for any p > 0, one can now match the required effort incentives, ak′ (a),

by setting β sufficiently high since limβ→∞ (1−G (β)) β = ∞.

While the class of contracts in Lemma 2 is just one way to implement effort levels

a > ā, this class of contracts is of particular interest, as the following Proposition clarifies.

Proposition 3 Suppose the principal solves Problem 1 for a > ā and additionally faces

a lower bound on compensation in the form of

c (x) ≥ w, (9)
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Figure 2. The graph plots optimal compensation contract for a = 1.5ā for 3 different values of the
lower bound on compensation w.

where the minimum wage satisfies w < exp [u+ k (a)]. Then, an optimal contract exists

and is given by the contract in Proposition 2 setting w = w. The punishment probability

p (i.e., the option strike price) and the number of options, wβ
a
, are strictly increasing in

w.

Proposition 3 offers two interpretations. First, from an applied perspective, bounds

on compensation are not unrealistic, see e.g., Jewitt, Kadan and Swinkels (2008), and,

hence this Proposition offers a potential rationale for the wide-spread use of call options.

As a higher minimum wage limits the ability to “punish,” the punishment region must

optimally increase as must the number of options to provide sufficient incentives. Figure 2

illustrates these comparative statics by revealing that the kink moves to the right and

the slope increases with the minimum wage.

Second, Proposition 3 allows us to shed light on the failure of existence in the original

problem (absent a lower bound on compensation) by considering the limit as w becomes

arbitrarily small. As is obvious, the principal is strictly better off as the constraint on

the lower bound on pay is relaxed, i.e., as w approaches the agent’s subsistence level of

c = 0.7

Lemma 3 (An almost linear contract!) As the minimum wage approaches zero, the

option strike price approaches zero, i.e., limw→0 p = 0 and

lim
w→0

wβ = exp (u+ k (a) + γ + ak′ (a)− 1) . (10)

7For generalized log utility ln (c− c), the principal is constrained by the bound as long as w > c.
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The infimum wage costs (absent a minimum wage) for any action a > ā are given by

Winf (a) = eu+k(a)+γ+ak
′(a)−1. (11)

In the limit as w → 0 the contract is akin to a linear contract from the risk-neutral

principal’s perspective x
a
eu+k(a)+γ+ak

′(a)−1, see red line in Figure 2 for a “small” value of

the minimum wage. Yet, if the principal were to write an exact linear contract, the agent

would always choose ā (and PC would be slack). The “missing” incentives of ak′ (a)− 1

are created by the prospect of an infinitely severe (zero-pay) punishment realized with

zero probability just so that (IC**) is satisfied, i.e., in the limit p goes to zero and β goes

to infinity such that:

lim
w→0

pβ (1−G (β)) = ak′ (a)− 1. (12)

The analysis so far considered the compensation design problem for a given action a,

i.e., step 1 of the Grossman and Hart (1983) approach. We conclude by considering the

action choice problem of the principal, step 2 of their approach. Giving that the principal

obtains expected revenue a, the principal’s action choice problem is

a∗ = argmax
a

a−W (a) .

If one views non-existence as a “bug” rather than a feature (and one does not want to

impose a lower bound), the closed-form solution for infimum wage costs makes it possible

to derive sufficient conditions under which the principal would never want to implement

actions a > ā.

Proposition 4 (Existence and affine contracts in equilibrium) Suppose that the

marginal effort cost function is convex, k′′′ (a) ≥ 0, and the agent outside option is in-

termediate u ∈ [ǔ, û], then the equilibrium contract is affine as a∗ ≤ ā, see Proposition 1,

and the principal’s net profits are positive, a∗ −W (a∗) ≥ 0.

The idea behind the proof is simple. Convexity of the marginal cost function, k′′′ (a) ≥
0, ensures that infimum wage costs, see (11), are strictly convex.8 The outside option u

raises both the marginal cost and the level thereof. The lower bound ǔ ensures that the

marginal compensation costs exceeds the marginal revenue, W ′
inf (a) > 1 for all a > ā.

The upper bound û ensures that the principal’s net profits are still positive for a = ā,

i.e., ā > W (ā). (See Proof of Proposition 4 for the threshold values). In combination,

8 In general, Jewitt et al. (2008) show that conditions for the convexity of the principal’s compensation
cost function are much more complex.
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Proposition 4 thus provides intuitive conditions for a “well-behaved” equilibrium with

positive profits for the principal and optimal affine compensation contracts for the agent.

A Proofs

Proof of Lemma 1: First, we prove that an affine compensation scheme emerges
from (1) for all values of u and cost functions k (a) if and only if 1

u′(c)
is affine in c

and L (x| a) is affine in x. Let η (c) = 1/u′ (c), then an affine contract requires that
η−1 (λPC + λIC L (x| a)) is affine in x for any value of λPC and λIC (since these multipliers
encode the outside option u and effort cost function k (a)). This requires that 1

u′(c)
needs

to be affine in c and L (x| a) needs to be affine in x, i.e.,

1

u′ (c)
= k1 + k2c (A.1)

fa (x| a)
f (x| a)

= k3 + k4x (A.2)

where fa (x| a) := ∂f(x|a)
∂a

. We impose the economic restrictions that k2 > 0 (decreasing
marginal utility) and k4 > 0 (MLRP), see Milgrom (1981).

The solution to the ordinary differential equation (A.1) is given by

u (c) = C +
ln (k1 + k2c)

k2
.

Since a monotonic transformation of a utility function preserves optimal choices, it is
without loss of generality from an economic perspective to set C = 0, k2 = 1 and
k1 = −c, yielding generalized log utility, see Rubinstein (1977), i.e.,

u (c) = ln (c− c) ,

where c can be economically interpreted as the subsistence consumption level.
To obtain the solution the solution to the partial differential equation (PDE) in (A.2),

it is useful to set k3 = κ′(a)
κ(a)

and k4 = −δ′ (a) with δ′ (a) < 0 so that MLRP is satisfied
for all values of a. The solution to the PDE can then be written as follows

f (x| a) = κ (a) z (x) e−δ(a)x. (A.3)

To ensure that f (x| a) is a valid density function, the product κ (a) z (x) must be posi-
tively valued and normalized such that the integral over the support of x is equal to 1.
One can now verify that any density function satisfying Condition (A.3) indeed produces

an affine likelihood ratio, i.e., fa(x|a)
f(x|a) = κ′(a)

κ(a)
− δ′ (a)x.

Proof of Proposition 1: We first show that the first-order approach is valid for affine
compensation contacts. To do so, it is sufficient to show that the compensation value of a
linear contract from the agent’s perspective, V (ã) := Eã

[
ln
(
w + wβ x

a

)]
, given a desired
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action a, is strictly concave in the agent action ã. Integration and using the definition of
Ei (y) yields

V (ã) = ln (w)− e
a
ã

1
β Ei

(
−a

ã

1

β

)
. (A.4)

The goal is to show that V ′′ (ã) < 0. Let z (ã) := ãβ
a
≥ 0, then the second derivative of

V can be written as follows

V ′′ (ã) = −Θ(z (ã))

ã2
, (A.5)

where the functions Θ and G satisfy

Θ (y) :=

(
1

y
+ 2

)
G (y)− 1, (A.6)

G (y) := 1 +
1

y
e

1
y Ei

(
−1

y

)
. (A.7)

Both functions Θ and G are strictly increasing in y and map y ∈ R+ into [0, 1], see plot
in Figure A.1. Since Θ (z (ã)) ∈ [0, 1] and ã2 > 0, we, thus obtain that V ′′ (ã) < 0. Due

Figure A.1. This graph plots the functionsG (β) := 1+ 1
β e

1
β Ei

(
− 1

β

)
and Θ (y) :=

(
1
y + 2

)
G (y)−

1.

to strict concavity of V , the agent’s overall objective V (ã)− k (ã), is strictly concave for
any convex cost function k. This means that (IC-FOC) is both necessary and sufficient
for agent optimality.

Substituting the affine incentive scheme (3) into (IC-FOC) and integrating yields
(IC*). Effort incentives are solely determined by β (and, hence, independent of the
wage w), which is also evident from (A.4). Since G (β) ∈ [0, 1] , see Figure A.1, a
unique solution for β exists if and only if the right hand side of (IC*) is less than 1,
i.e., ak′ (a) < 1. Given that ak′ (a) is strictly increasing in a (by convexity of k) this
condition is equivalent to a < ā. Hence, any action a ∈ [0, ā) is implementable with an
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affine compensation contract.
Given the solution for β∗ from (IC*), we obtain the optimum base wage w∗ from

binding (PC), i.e., the agent’s compensation value given the optimal action a, V (a) =

ln (w)− e
1
β∗ Ei

(
− 1
β∗

)
, see (A.4), matches the agent’s outside option u+ k (a), so that

ln (w∗) = u+ k (a) + e
1
β∗ Ei

(
− 1

β∗

)
. (A.8)

Using the optimality condition (IC*) for β∗, we obtain (PC*).

Proof of Proposition 2: We first show the comparative statics of β. The optimality
condition (IC*) implies that G (β) = ak′ (a). The implicit function theorem, thus, implies
that

dβ∗

da
=

k′ (a) + ak′′ (a)

G′ (β)
> 0, (A.9)

which is strictly positive because k is strictly increasing and convex and G is strictly
increasing in β, i.e.,

G′ (β) =
β −G (β) (1 + β)

β2
> 0. (A.10)

We now turn to the comparative statics of the wage w. Taking the total derivative of
(A.8) with respect to a yields:

d lnw∗

da
= k′ (a)−

e
1

β∗(a) Ei
(
− 1
β∗(a)

)
+ β∗ (a)

β∗ (a)2
dβ∗

da

= −
(

Θ(β∗ (a))

G′ (β∗ (a)) β∗ (a)
k′ (a) +

G (β∗ (a))

G′ (β∗ (a)) β∗ (a)
ak′′ (a)

)
< 0. (A.11)

where the second line follows from substituting in dβ∗

da
from (A.9) and using G′ (β) from

(A.10). The derivative (A.11) is, thus, negative because Θ, G and G′ are positive valued
and the cost function k is strictly increasing and convex.

For a = 0, the compensation contract is simply the (flat) first-best compensation
contract. Next consider the limit as a approaches ā, in which case lima→ā β

∗ (a) = ∞.

Since limβ→∞ e
1
β Ei

(
− 1
β

)
= −∞, (A.8) implies that the log wage does so as well. The

limiting compensation contract can, thus, be written expressed as

lim
a→ā

c (x) = lim
a→ā

w∗ + w∗β∗x

a
=

x

ā
lim
a→ā

w∗β∗. (A.12)
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To determine lima→āw
∗β∗, it is useful to consider the limit of its logarithm:

lim
a→ā

ln (w∗β∗) = lim
a→ā

lnw∗ + ln β∗

= u+ k (ā) + lim
β→∞

e
1
β∗ Ei

(
− 1

β∗

)
+ ln β∗

= u+ k (ā) + γ, (A.13)

where the second line follows from (A.8) as well as lima→ā β
∗ (a) = ∞ and the third

line follows from the fact that limβ→∞ e
1
β∗ Ei

(
− 1
β∗

)
+ ln β∗ = γ, the Euler-Mascheroni

constant. Since lima→ā c (x) =
x
ā
lima→āw

∗β∗ from (A.12) and using lima→ā ln (w
∗β∗) =

u+ k (ā) + γ, we obtain the limit contract (6).

Proof of Proposition 2: Given the piece-wise linear contract in (7), the payment to
the agent is given by:

c (x) =

{
w

w + wβ
a
(a ln[1− p] + x)

if x ≤ −a ln[1− p]
else

. (A.14)

Since Pa [x ≤ −a ln[1− p]] = p, the agent, thus, receives w with probability p. Using
(A.14) and integration yields

Ea [L (x| a)u (c (x))] a = (1− p) (G (β)− (1−G (β)) β ln (1− p)) (A.15)

Ea [u (c (x))] = u (w) + (1− p) (1−G (β)) β (A.16)

(A.15) and (A.16) now directly imply (IC**) and (PC**). Because ln (1− p) < 0 for any
p ∈ (0, 1) and limβ→∞ (1−G (β)) β = ∞, one can now set β sufficiently high so that
(A.15) is satisfied. (PC**) now implies that

1− p =
u+ k (a)− ln (w)

(1−G (β)) β
. (A.17)

Since u+ k (a) > ln (w), we obtain that p < 1.

Proof of Lemma 3: The optimality of the contract described in Proposition 2 in the
presence of a lower bound w follows from Definition 1 and Proposition 1 of Jewitt et
al. (2008) as well as Proposition 2 of Hoffmann, Inderst and Opp (2020). That is, for
λPC+λIC L (x| a) < w, the lower bound binds, i.e., c (x) = w. For λPC+λIC L (x| a) ≥ w,
the constraint on the lower bound constraint is slack, and, hence the optimal payment is
c (x) = λPC + λIC L (x| a), where L (x| a) = x−a

a2
.

Using the compensation specification in (7), we can now perform comparative statics
in w. Substituting (A.17) into (IC**) implicitly characterizes the solution for β for any
value of w, i.e., h (β, w) = 0, where

h (β, w) =

G(β)
(1−G(β))β

+ ln
(

1−G(β)β
u+k(a)−ln(w)

)
(u+ k (a)− ln (w))−1 − ak′ (a) . (A.18)
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Letting b = βw and applying the implicit function theorem, we obtain

db

dw
= −

∂h
∂w

∂h
∂b

=
(1−G (β)) β (− ln (1− p)− p) + pG (β)

βG′ (β) (1− p)
> 0 (A.19)

Since − ln (1− p) > p for p ∈ (0, 1), G (β) ∈ (0, 1), G′ (β) > 0, we obtain that db
dw

> 0.

Next we compute the comparative statics of p. Rearranging (A.17) and using β = b
w
,

we obtain:

p = 1− u+ k (a)− ln (w)(
1−G

(
b
w

))
b
w

. (A.20)

Totally differentiating (A.20) with respect to w yields:

dp

dw
=

∂p

∂w
+

∂p

b

db

dw
= ζ

[
β [1−G (β) (1− p)] +G (β) (1− p)

db

dw

]
> 0, (A.21)

where ζ = e
− 2

β (1−G(β))

w[Ei(− 1
β )]

2 > 0 and the term in brackets is positive since 0 < G (β) < 1,

0 < p < 1, and db
dw

> 0.

Proof of Lemma 3: The proof follows from considering the limit as the minimum wage
approaches zero (from above):

lim
w↓0

h

(
b

w
,w

)
= 1− γ − k (a)− u+ ln[b]− ak′ (a) (A.22)

where γ denotes the Euler-Mascheroni constant. Setting limw↓0 h
(
b
w
, w

)
= 0 and solving

for b, thus yields:
lim
w↓0

b = exp (u+ k (a) + γ + ak′ (a)− 1) .

We can now also solve for the limit Lagrange-multipliers as w approaches zero:

λPC + λIC
x− a

a2
=

b

a
x (A.23)

Matching coefficients implies that limw↓0 λIC = ab and limw↓0 λPC = b.

Proof: Given infimum compensation costs of Winf (a) = eu+k(a)+γ+ak
′(a)−1 > 0, the first

and second derivative are

W ′
inf (a) = Winf (a) (2k

′ (a) + ak′′ (a)) , (A.24)

W ′′
inf (a) = Winf (a)

(
4k′ (a)2 + 3k′′ (a) + 4ak′ (a) k′′ (a) + a2k′′ (a)2 + ak′′′ (a)

)
(A.25)

(A.25) implies that convexity of the marginal cost function, k′′′ (a) > 0, ensures convexity
of the infimum compensation cost function W ′′

inf (a) > 0.
First, to ensure that the principal never wants to implement actions a > ā, it is

sufficient that marginal compensation costs exceed the marginal revenue W ′
inf (a) > 1 for
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all a > ā. Given strict convexity of Winf (a), this condition requires that W ′
inf (ā) ≥ 1,

i.e.,
eu+k(ā)+γ (2k′ (ā) + ak′′ (ā)) ≥ 1. (A.26)

Second, the condition Winf (ā) < ā ensures that the principal’s profits are positive for
some a ≤ ā, i.e.,

eu+k(ā)+γ ≤ ā. (A.27)

Jointly, conditions (A.26) and (A.27), thus require that:

1

2k′ (ā) + āk′′ (ā)
≤ eu+k(ā)+γ ≤ ā. (A.28)

We first prove that ā > 1
2k′(ā)+āk′′(ā)

or equivalently ā (2k′ (ā) + āk′′ (ā)) > 1. Since

āk′ (ā) = 1, this condition is always satisfied as 1 + ā2k′′ (ā) > 0 by convexity of k.
Since ā > 1

2k′(ā)+āk′′(ā)
, it is thus possible to satisfy Condition (A.28) by choosing u

appropriately. The lower and upper bound for the outside option are given by

ǔ = − ln (2k′ (ā) + āk′′ (ā))− k (ā)− γ, (A.29)

û = ln (ā)− k (ā)− γ. (A.30)
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