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Abstract

We develop a tractable dynamic general equilibrium model of oligopolistic competition with a continuum 
of heterogeneous industries. Industries are exposed to aggregate and industry-specific productivity shocks. 
Firms in each industry set value-maximizing state-contingent markups, taking as given the behavior of all 
other industries. When consumers are risk-averse, industry markups are countercyclical with regards to the 
industry-specific component, but may be procyclical with regards to the aggregate shock. The general equi-
librium dispersion of markups implied by the optimization of heterogeneous industries creates misallocation 
of labor across industries. The misallocation, in turn, generates aggregate welfare losses state-by-state that 
feed back into the industry problem via a representative agent’s marginal utility of aggregate consumption. 
Misallocation dynamics may transmit industry-specific shocks, or amplify small aggregate shocks, and so 
lead to aggregate fluctuations through these feedback effects.
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1. Introduction

How does industry-level firm strategic interaction influence the aggregate economy? Although 
the effects of strategic interaction have been thoroughly analyzed in the Industrial Organization 
literature, the aggregate implications have typically been ignored. In this paper we develop a gen-
eral equilibrium model in which oligopolistic intra-industry competition generates markup dis-
persion across heterogeneous industries, which leads to resource misallocation (see Lerner [34]) 
and hence affects aggregate consumption. Following standard asset pricing insights, changes in 
aggregate consumption affect agents’ marginal utilities across states and thereby the valuation of 
firms’ future cash flows; this in turn feeds back into the firms’ ability to sustain collusion, leading 
to a rich set of implications.

We study a discrete time, infinite horizon general equilibrium economy with a continuum of 
industries, each of which is defined by a production technology. Within each industry, a finite 
number of identical strategic firms hire labor to produce a homogeneous good. The price of the 
good in each industry is determined by the outcome of a dynamic pricing game similar to Rotem-
berg and Solaner [42]. A representative agent consumes all goods, supplies all labor, and owns all 
the firms; thus all profits are valued by her preferences over consumption. We allow industries to 
differ cross-sectionally, both in their number of firms and their exposure to productivity shocks. 
These sources of heterogeneity allow us to capture industry-specific strategic behavior, generate 
heterogeneous markups, and analyze how industry-specific productivity shocks are transmitted 
to the aggregate economy.

Firms in each industry maximize profits subject to intertemporal incentive compatibility con-
straints: In each period, each firm weighs the value of high short-term profits that can be obtained 
by aggressive pricing against the long-term profits that are obtained when all firms cooperate. 
The value of such long-term profits is determined by the preferences of the representative agent. 
In general equilibrium, the representative agent’s consumption bundle depends on the sum of 
all outputs produced in each industry. If markups are heterogeneous across industries, relative 
goods’ prices are distorted compared to the first-best outcome, leading to a) misallocation of 
labor to industries and b) a reduction in aggregate consumption. Such changes in consumption 
affect the representative agent’s marginal utility across states and hence her valuation of each in-
dustry’s profits, and therefore feed back into each firm’s ability to sustain collusion. Thus, while 
each industry takes the macro dynamics as given, industries jointly affect these macro dynamics 
through changes in the representative agent’s consumption. Our paper therefore provides a tight 
link between strategic industry behavior and aggregate outcomes.

We make three theoretical contributions. First, we focus on one industry. We characterize 
markups and derive conditions under which they are procyclical and countercyclical, respec-
tively. Countercyclical markups are often associated with oligopolistic competition, based on 
Rotemberg and Solaner [42]. In their framework, high product demand in good times increases 
firms’ incentives to undercut competitors to reap immediate rewards; therefore equilibrium 
markups narrow in good times. Our paper shows that this intuition can be overturned. Our ar-
guments follow from the fundamental insights of consumption based asset pricing that market 
discount rates vary with the state of the economy, in contrast to the risk-neutral setting of Rotem-
berg and Solaner [42]. If discount rates are sufficiently low in good times, then the present value 
of future cooperation compared to current period profits is higher in booms, making procyclical 
markups possible. This insight is general. Within our model, market discount rates can be en-
dogenously countercyclical if the representative agent’s intertemporal elasticity of substitution 
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Fig. 1. This graph plots a histogram of the distribution of markup cyclicality across industries. Specifically, the term 
ρ�y�pcm(z) refers to the time-series correlation coefficient of yearly log changes of the price cost margin of a particular 
industry z with yearly log changes in industrial output. Since the average industry features ρ�y�pcm(z) > 0, the evidence 
suggests slightly procyclical markups. See Appendix A for data description and variable definitions.

is low. With constant relative risk aversion, the threshold level for procyclicality is given by a 
coefficient of relative risk aversion of 1, i.e., for logarithmic utility.

While the cyclicality of the “average industry” is ambiguous, following the previous logic, 
we also show that one can decompose an industry’s profit variations into an aggregate and an 
industry-specific component and that the source of ambiguity lies in the aggregate component. 
Markups are always countercyclical with respect to the industry-specific component, i.e., con-
trolling for the aggregate shock. This is natural, since industry-specific shocks do not affect the 
marginal utility of consumption and hence discount rates.

It is important to understand how and why markups vary over the business cycle in the de-
sign of optimal monetary policy. The cyclicality of markups is a key building block of leading 
Neo-Keynesian macroeconomic models (see e.g., Goodfriend and King [25], Woodford [48], 
and Christiano et al. [13]). As Nekarda and Ramey [38] highlight, most Neo-Keynesian models 
share the feature that markups fall in response to positive demand shifts, while providing em-
pirical evidence that this prediction does not hold up in the US post-war data: Average markups 
are slightly procyclical (see Fig. 1 of Nekarda and Ramey [38]). Using asset-pricing insights, 
our model can generate procyclical markups for the average industry using reasonable parame-
ter values. In addition, our multi-industry framework allows for the possibility of heterogeneous 
markup cyclicality across industries. We provide first-pass evidence that this heterogeneity is em-
pirically relevant. We estimate a panel of price-cost margins (PCM) for 451 industries between 
1959 and 2009 using the NBER manufacturing productivity database of Bartelsman and Gray.1

Fig. 1 plots the resulting histogram of time-series correlation coefficients of industry markups 
with industrial output growth (GDP). Some industries exhibit strong countercyclical markups 

1 While (average) price cost margins only correspond to precise markup estimates under special assumptions, e.g., if 
labor is the only factor input and production is constant returns to scale, they should be interpreted as a reasonable first 
pass proxy. (See Nekarda and Ramey [38] for more advanced methods.)
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while others exhibit strong procyclical markups, a pattern that our model can replicate by allow-
ing for industry-specific shocks.2

Our second, theoretical contribution is to analyze how the heterogeneous oligopolistic 
industry-level firm behavior may amplify technological shocks or even be the only source of 
aggregate volatility in the economy. Misallocation arises because incentive constraints of hetero-
geneous industries are not synchronized across industries, either due to industry-specific shocks 
or different levels of competitiveness. Misallocation dynamics occur because the heterogeneity 
of the incentive problem (and hence markups) varies across states. While misallocations origi-
nate in industry-specific shocks, interesting feedback effects may arise. Small changes in a few 
industries may become amplified if they affect other industries’ ability to sustain collusive out-
comes through the effects they have on the representative agents future valuation of consumption. 
In several examples we show that the amplification effects can be large. We also highlight that 
shock amplification occurs whenever the endogenous cross-sectional dispersion of markups is 
higher during recessions than in good times, and that dampening of shocks is also theoretically 
possible in equilibrium, if markup dispersion is sufficiently procyclical.

Our third contribution is technical: We characterize the existence and qualitative behavior of 
equilibrium in our model. Given the complete generality of our set-up, allowing for full hetero-
geneity across industries and states, existence of equilibrium is by no means clear, a priori. Our 
main result in this part of the paper is Proposition 4, which shows the existence of equilibrium 
under minimal assumptions.

Literature. We are certainly not the first researchers to address these issues and to explore micro 
foundations of macro shocks. Furthermore, as our approach straddles multiple fields, it draws on 
various literatures including the industrial organization literature, the literature on misallocations 
and the literature on the propagation of macro shocks.

Our partial equilibrium results are most closely related to the Industrial Organization literature 
on strategic competition over the business cycle following the seminal paper by Rotemberg and 
Solaner [42] (see, e.g., Chevalier and Scharfstein [11,12], Bagwell and Staiger [4], and Halti-
wanger and Harrington [26]). Synthesizing the literature and our contribution in a nutshell, one 
can identify three distinct and intuitive channels governing the cyclicality of markups: current 
period industry demand, future industry demand growth, and discount rates. Rotemberg and 
Solaner [42] find that higher current period demand (ceteris paribus) increases the incentive 
to deviate and lowers equilibrium markups. Haltiwanger and Harrington [26] as well as Bagwell 
and Staiger [4] make the important observation that higher future demand (growth) decreases 
the incentive to deviate since high future collusion profits make deviation today less attractive. 
The discount rate channel that we propose affects the tradeoff between today’s profits and future 
profits: In good aggregate states, the representative agent values an additional consumption unit 
less than in bad times, which effectively lowers her discount rate and hence increases valuations, 
systematically leading to (more) procyclical markups for the average industry.3

We extend this partial equilibrium literature by incorporating strategic behavior into a general 
equilibrium framework with multiple industries, thereby endogenizing aggregate consumption 

2 See also Bils et al. [8], who provide evidence on variation of relative markups of durables and non-durables over the 
business cycle.

3 dal Bo [14] considers stochastic interest rates in a collusion model, but since these fluctuations are exogenous (i.i.d.), 
the paper does not address pro- or countercyclicality of markups.
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and the pricing of risk. Our general equilibrium framework is built on the seminal paper by 
Rotemberg and Woodford [43] although the analysis focuses on different effects of markups. In 
their model, countercyclical markups can transmit aggregate demand shocks by the government 
to the real economy. In our paper, we shut down the real effects of markup levels by excluding 
government expenditures and assuming inelastic labor supply. Instead, we focus on the misallo-
cation resulting from markup dispersion, which is absent from their model due to the assumption 
of symmetric industries. Our extension to allow for cross sectional variation of industry con-
centration and productivity makes it possible to generate dynamics of markup dispersion in a 
completely real model, microfounded by value-maximizing strategic behavior at the industry 
level.

Since misallocations are the only source of inefficiencies in our general equilibrium frame-
work, our paper features similar distortions as classical sticky-price models in the spirit of 
Calvo [9]. In contrast to sticky-price models, however, prices in our model are fully flexible 
and are determined endogenously as the outcome of a strategic game of optimizing, heteroge-
neous industries. As Bilbiee et al. [6] point out, the fundamental economics behind misallocation 
can be traced back to early essays of Lerner [34] and Samuelson [44]. Misallocation of labor via 
markup dispersion is particularly relevant for the literature on international trade since compe-
tition from abroad naturally affects industries in a heterogeneous way (see Epifani and Gancia 
[20], Holmes et al. [27], Edmond et al. [19], and Dhingra and Morrow [16]). From a modeling 
perspective, the literature on misallocation also highlights the special role of CES preferences 
under monopolistic competition in that market outcomes are efficient due to markups synchro-
nization (see in particular Bilbiee et al. [6] and Dhingra and Morrow [16]).4 Instead, our paper 
shows that inefficiencies can arise even in settings with CES preferences (and inelastic labor 
supply) by allowing for oligopolistic competition with heterogeneous industries. This allows us 
to keep the tractability and standard aggregation results of CES preferences, while being able to 
match relevant heterogeneity across industries.

Empirical studies suggest that losses from misallocation can be quantitatively large; at least in 
emerging market countries. Hsieh and Klenow [28] estimate static losses ranging from 30%–50%
in China and 40%–60% in India. In a dynamic setting, Peters [40] considers the joint effect of 
misallocation, endogenous entry (see also Bilbiee et al. [7]) and incentives to innovate (see also 
Kung and Schmid [32]). Using a sample of manufacturing firms in Indonesia, he finds that a 
large proportion of the welfare gains from reducing barriers to entry results from the effect on 
the equilibrium growth rate rather than the reduction in (static) misallocation.

Since our paper combines real technology shocks with the just described endogenous misal-
locations, our paper also relates to an extensive literature on business cycles (e.g., Kydland and 
Prescott [33], Long and Plosser [35], Gabaix [22], Acemoglu et al. [2]). In contrast to the real 
business cycle literature, however, significant aggregate fluctuations may arise even when aggre-
gate “technological” shocks are small. A recent strand of literature has aimed at explaining how 
technological shocks at the individual firm or industry level do not diversify out, but may af-
fect aggregate productivity. Gabaix [22] notes that if the distribution of firm size is heavy-tailed, 
firm-specific shocks may indeed affect aggregate productivity. Acemoglu et al. [2], suggest that 
inter-sectoral input-output linkages between industries may lead to “cascades effects” where a 
shock in one industry spreads through the economy and thereby becomes an aggregate shock. 
In our setup, such “cascade effects” may arise through the channel of the pricing kernel even 

4 See Zhelobodko et al. [50] for a generalization of CES preferences.
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if there is no direct input-output linkage between sectors. The mechanism in our model is also 
quite different, more along the lines suggested in Jovanovic [31], who shows that idiosyncratic 
shocks may not cancel out in strategic games with a large number of players. We develop exam-
ples in which aggregate productivity is close to constant across states, but because it varies at the 
sectoral level, the strategic behavior of firms leads to aggregate shocks in equilibrium.

Our results highlight how strategic interaction between firms can generate endogenous fluctu-
ations. These results are related to Gali [24] and Schmitt-Grohe [45] who, building on Woodford 
[47,49], study stationary sunspot equilibria in models with markups and investments. Both pa-
pers focus on the symmetric case with monopolistic competition, in which case the multiplicity 
of equilibria arises because of self-fulfilling expectations about future growth rates.5 In contrast, 
our model features a unique equilibrium under symmetric behavior, i.e., homogeneous industries. 
Our key contribution is to allow for heterogeneous sectors in which welfare distortions arise from 
the dispersion of markups across industries. Multiplicity of equilibria can only occur if feedback 
effects are sufficiently strong.

The rest of the paper is organized as follows. In Section 2 we present the economic frame-
work of the model. The equilibrium analysis of each industry and their joint effect on aggregate 
outcomes is presented in Section 3. Section 4 shows the existence of general equilibrium under 
general conditions and discusses how endogenous misallocation dynamics may arise. Section 5
discusses the empirical implications of our paper. All proofs are delegated to Appendices A 
and B.

2. Model framework

2.1. Physical environment

Consider an infinite horizon, discrete time, discrete state economy in which time is indexed 
by t ∈ Z+ and the time t state of the world is denoted by st ∈ {1, 2, . . . , S}.6 Each period there is 
a transition between states, which is governed by a Markov process with time invariant transition 
probabilities:

P(st+1 = j |st = i) = Φi,j . (1)

Here, Φi,j refers to the element on the ith row and j th column of the matrix Φ ∈ R
S×S+ . We 

assume that Φ is irreducible and aperiodic, so that the process has a unique long-term stationary 
distribution.

2.1.1. Production
There is a continuum of industries, indexed by z ∈ [0, 1], each consisting of N(z) ≥ 1 identi-

cal strategic firms that produce and sell a unique non-storable consumption good. The nature of 
the strategic environment is discussed in Section 2.2. The production technology for each good z
at time t is linear in labor with stochastic productivity A(z, t) = Ast (z)(1 + g)t . Here, with some 
abuse of notation, Ast (z) represents a state-dependent and sector-specific productivity compo-
nent, whereas g ≥ 0 represents a common long-term productivity growth rate across all sectors. 

5 In Jaimovich [29], sunspot equilibria and countercyclical markups arise via entry and exit decisions (also see 
Jaimovich and Floetotto [30]).

6 Here, Z+ = {0} ∪N = {0, 1, . . .} is the set of non-negative integers. Also, we follow the standard convention that R+
is the set of nonnegative real numbers, whereas R++ is the set of strictly positive real numbers.
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For ease of exposition, we set g = 0 in the main text and refer the reader to the Online Appendix, 
which shows the minor modifications necessary for the general case g > 0. Also, for tractability 
we assume that A : S ×[0, 1] → R++ is a function that satisfies standard integrability conditions 
so that aggregation across industries is possible. Labor is supplied inelastically by a representa-
tive agent, who in each period allocates her one unit of human capital across industries, earning 
a competitive wage, w(t), in return.7

2.1.2. Preferences/demand
The representative agent possesses iso-elastic preferences over aggregate consumption with 

risk aversion parameter γ and subjective discount factor δ, i.e.,

U = E

[ ∞∑
t=0

δt C(t)1−γ

1 − γ

]
, (2)

where C(t) represents the Dixit–Stiglitz CES consumption aggregator of goods (see Dixit and 
Stiglitz [17]).8 Thus,

C(t) =
( 1∫

0

c(z, t)
θ−1
θ dz

) θ
θ−1

. (3)

The parameter θ > 1 is the (constant) elasticity of substitution across goods. While industries 
are thus assumed to be symmetric on the demand side, a more general state dependent utility 
specification can be easily mapped into our model, which would allow us to capture industry 
heterogeneity in demand, say cyclical vs. countercyclical goods.9

The CES specification leads to standard period-by-period demand functions as a function of 
prices p(z, t) and real income y(t)10:

c(z, t) = y(t)

p(z, t)θP (t)−θ
, (4)

where P(t) ≡ (
∫ 1

0 p(z, t)1−θ dz)
1

1−θ can be interpreted as the aggregate price index. Without 
loss of generality, we can normalize the nominal price index P(t) to 1. Hence, all variables are 
measured in units of aggregate consumption. In particular, real income, y(t), is derived from 
wages, and distribution of firm profits, π(z, t), across all sectors z:

y(t) = w(t) +
1∫

0

π(z, t)dz, (5)

7 We deliberately shut down the channel of endogenous labor supply to sharpen our findings of factor misallocation 
across heterogeneous sectors. Thus, our production factor in fixed supply could also be interpreted as “land” that has to 
be allocated to different sorts of crops (industries). We excluded physical capital accumulation from our model to avoid 
the issue of disentangling effects of dynamic investment decisions from the effects of state-contingent markups.

8 See van Binsbergen [46] or Ravn et al. [41] for using CES preferences in a dynamic context.
9 Consider the more general C̃(t) = (

∫ 1
0 vst (z)c(z, t)

θ−1
θ dz)

θ
θ−1 as in Opp [39]. The state dependent “taste” func-

tion vs(z) can then easily be reduced to the case where vs (z) ≡ 1, by transforming the productivity, As(z) 	→
vs(z)

(θ−1)/θAs(z). Such a transformation can be interpreted as a numeraire change, where the amount of a unit of 
goods is redefined in each state.
10 The demand functions c(z, t) yield maximal C(t) given an arbitrary price vector p(z, t) and income y(t). They are 
obtained via simple first-order conditions.
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π(z, t) =
[
p(z, t) − w(t)

A(z, t)

]
c(z, t). (6)

2.2. Strategic environment

Within each industry z, N(z) identical firms play a dynamic Bertrand pricing game with 
perfect public information, taking as given the behavior of all other industries. In contrast to 
Rotemberg and Solaner [42], we assume that firm value is determined by the preferences of a 
risk-averse (rather than risk-neutral) representative agent.

The timing of the stage game in each period, t , is as follows. First, the state, st is revealed. 
Then all firms i ∈ {1, 2, . . . ,N(z)} in industry z simultaneously announce their gross markup, 
M(i)(z, t). For tractability, we express each firm’s strategy in terms of gross markups instead of 
prices, satisfying p(i)(z, t) = M(i)(z, t) w(t)

Ast (z)
. Consumers demand the product from the producer 

with the lowest markup. If all firms announce the same M , total demand in sector z is evenly 
shared between all N(z) firms. The firms then hire workers at a competitive wage w(t) to meet 
demand.

Following Abreu [1], we are interested in industry equilibria that generate the highest present 
value of industry profits sustainable by credible threats. We restrict attention to symmetric, pure 
strategy subgame perfect equilibria. Firms condition their action at time t on the entire history 
of past actions of industry z and states up to time t . The relevant history of each industry z, ht is 
defined as the entire sequence of markups, states, and aggregate variables:

ht = {{
M(i)(z, τ )

}N(z)

i=1 , sτ ,P (τ), y(τ )
}t

τ=0, (7)

with h0 representing the empty history. Thus, a time-t , industry-z strategy for firm i is a mapping 
from ht−1 × S to a chosen markup, Mi(z, τ), f i

t : ht−1 × S → R++, (i.e., f i
t ∈ R

ht−1×S
++ ). Here, 

the second parameter, s ∈ S, represents time t information about the state, which is available for 
the firm. A strategy for firm i is a sequence of time τ strategies, {f i

τ }∞τ=0.
The entire set of subgame perfect equilibria can be enforced with the threat of the worst 

possible subgame perfect equilibrium. In our environment, the most severe punishment is given 
by the perfectly competitive outcome, i.e., zero profits forever after a deviation. Therefore, any 
subgame perfect equilibrium must satisfy the following incentive constraints at each date t ,

πt (z) + Vt (z)

N(z)
≥ πt (z). (8)

That is, collusion is only sustainable if each firm’s share, 1
N(z)

, of today’s industry profits, πt(z), 
and the present value of future industry profits, Vt , is greater or equal to the best-possible one 
period deviation of capturing the entire industry demand πt and zero profits thereafter. An im-
portant force of this incentive constraint in our setup is captured by the valuation of uncertain 
profit streams by a risk-averse agent which will be reflected in Vt(z) (see detailed discussion in 
Section 3.2.2).

Myopic industry value maximization of Vt(z), subject to Eq. (8), represents the only friction 
in our economy.11 While the equilibrium outcome of this game is in general non-trivial (see 

11 We are implicitly assuming that firms can coordinate within an industry to achieve this best outcome with this equi-

librium selection mechanism. This trivially rules out any outcomes where markups are higher than θ
θ−1 , and outcomes 

where markups are lower than necessary. We do not, however, assume that firms can coordinate across industries, since 
in a large economy there are many industries and global coordination therefore is typically not possible.
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Section 3.3), the two polar cases of a monopoly, i.e., N(z) = 1, and perfect competition provide 
useful bounds. If the industry is served by a monopolist, he maximizes industry profits (Eq. (6)) 
subject to consumer demand (Eq. (4)) which leads to an optimal markup of:

Mm(z, t) = Mm = θ

θ − 1
. (9)

If, on the other hand, N(z) is infinite, then we expect prices to be set competitively. In this 
case, the markup is 1. If the number of firms is finite but greater than one, we expect equilibrium 
markups to be somewhere in between the competitive and monopolistic prices, i.e., M ∈ [1, θ

θ−1 ].

3. Partial equilibrium analysis

Our partial equilibrium analysis consists of two parts. First, for an arbitrary exogenous dis-
tribution of markups across industries, we characterize aggregate consumption, and show that 
it, together with a measure of aggregate markups, determines the efficiency losses in the econ-
omy (Section 3.2). Second, given the aggregate consumption and aggregate markup dynamics, 
we solve for the partial equilibrium outcome of one sector z in the economy, i.e., the optimal 
state-contingent markups (Section 3.3).

3.1. Preliminaries

We focus on equilibria which are time invariant in that equilibrium outcomes are the same at 
t1 and t2 if the states are the same, i.e., if st1 = st2 . Hence, we introduce the following notation 
for equilibrium markups (and similarly for other variables):

M(z, t) = Mst (z). (10)

The focus on time invariant equilibria is natural in our stationary environment, since we prove 
that optimizing firm behavior in one particular industry is endogenously time invariant provided 
that all other industries exhibit time-invariant behavior. Moreover, it is ensured that (at least) one 
time-invariant equilibrium exists (see Proposition 4). We want to emphasize that this formulation 
does not impose any restriction on off-equilibrium path behavior.

For ease of exposition, we decompose productivity shocks As(z) into the functions αs(z) and 
Ās where α : S × [0, 1] and the vector Ā ∈ R

S+. Specifically,

αs(z) ≡ As(z)
θ−1∫ 1

0 As(z)θ−1dz
=

(
As(z)

Ās

)θ−1

, where (11)

Ās ≡
[ 1∫

0

As(z)
θ−1dz

] 1
θ−1

. (12)

Here, Ā represents the average productivity shock to the economy and αs(z) captures the indus-
try productivity shock relative to the economy. In other words, changes in α(z) across states are 
industry-specific shocks, whereas changes in Ā are aggregate shocks. We can also view α(z) as 
an S-vector, α(z) ∈ R

S . Note that an industry with a constant α across all states, moves one-to-
one with the aggregate state. Since industries are of infinitesimal size, industry-specific shocks 
α can thus also be interpreted as idiosyncratic shocks. As a result of the normalization, the aver-
age relative industry state is equal to one, i.e., 

∫ 1
αs(z)dz = 1. Now instead of specifying A, we 
0
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can equivalently specify the function of industry-specific shocks, α, and the vector of aggregate 
shocks, Ā ∈ R

S++. Given the previous argument, the exogenous variables in the economy can 
then be represented by the tuple E = (α, Ā, N, Φ, θ, γ, δ).

3.2. Aggregate consumption and welfare

Aggregate consumption is an important endogenous variable. As outlined above, we will first 
treat the outcome of the strategic game for each industry and each state as exogenously given, as 
summarized by the gross markup functions for each industry, Ms(z). Together with the exoge-
nous functions, αs(z) and Ās , the real outcome in the economy or the consumer’s consumption 
bundle is completely determined, state-by-state. We will use aggregate consumption in two ways. 
First, as a measure of welfare and, second, to value a stream of risky cash flows.

3.2.1. Misallocations and aggregate markups
This section illustrates how markup dispersion across industries creates misallocations (in the 

spirit of Lerner [34]). For ease of exposition, we introduce two statistics of the cross-sectional 
markup distributions for the macro-economy in each state s:

M̄s = G1−θ (Ms), (13)

ηs =
(

G−θ (Ms)

G1−θ (Ms)

)θ

≤ 1, (14)

where Gp(Ms) = (
∫

αs(z)Ms(z)
pdz)

1
p refers to the p-th order cross-sectional power mean of 

Ms(z).12 These statistics capture distinct elements of the cross-sectional markup distribution, and 
are jointly sufficient in describing the aggregate economy. The variable M̄s captures the notion 
of aggregate market power, i.e., an appropriate average markup across industries. The variable 
ηs captures the (inverse of) dispersion of markups across industries. By Jensen’s inequality, ηs is 
bounded above by one (obtained when all industries charge the same markup) and is decreasing 
in the dispersion of markups.13 The variable ηs can be interpreted as a measure of allocative 
production efficiency.

Lemma 1. Given the functions Ms , αs and Ās , aggregate consumption, Cs , real income ys , in 
state s are given by:

Cs = ys = Āsηs . (15)

The fraction of real income that is derived from labor income is given by:

ωs = 1

ηsM̄s

. (16)

The outcome in state s is Pareto efficient if Ms(z) ≡ ks for all z, so that ηs = 1.

From Eq. (15), aggregate consumption only depends on the exogenous aggregate shock Ās

and allocative efficiency ηs implied by the markup distribution. As long as markups do not vary 

12 Notice that by construction 
∫ 1

0 αs(z)dz = 1, so we interpret α as a weighting measure where each industry obtains a 
weight according to its relative productivity.
13 This follows from the fact that Gp(x̃) > Gq(x̃) for any non-degenerate random variable x̃ as long as p > q .
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across industries in each state (i.e., Ms(z) ≡ ks for all z and s), the allocation of labor to indus-
tries is efficient so that aggregate consumption, i.e., potential output, is given by the aggregate 
shock Ās . In all such economies, relative goods prices match the perfectly competitive and hence 
efficient outcome. Allocative efficient economies can only differ in terms of the decomposition of 
income, i.e., the fraction of income derived from labor ωs and from firm profits, which are redis-
tributed to the representative agent. An important benchmark case is the monopolistic economy, 
in which Ms(z) = θ

θ−1 and ω = θ−1
θ

.

3.2.2. Valuation
A fundamental insight of the consumption based asset pricing literature is that the rate used to 

discount future cash flows should be intimately related to the state of the economy, and specifi-
cally to aggregate consumption. The general implication is that cash flows received in bad states 
of the world will be worth more than cash flows received in good states, and thereby discounted 
at a lower rate. The discount factor is thus stochastic; it depends on the realization of future 
consumption.14

We assume that there is a complete market of Arrow–Debreu securities in zero net supply, 
in addition to the stocks of the firms. The time t value of a stochastic cash flow received at 
t + 1, Qst+1 , is then E[SDFt+1 ×Qst+1 ], i.e., the value is the expectation of the future cash flows 
discounted with the stochastic discount factor, the SDF (also called the pricing kernel). With our 

utility specification, SDFt+1 = δ(
Cst+1
Cst

)−γ . Given our decomposition of aggregate consumption 
into a productivity and a misallocation component (15), it follows that the SDF can be written as

SDFt+1 = δ

(
Cst+1

Cst

)−γ

= δ

(
Āst+1

Āst

)−γ (
ηst+1

ηst

)−γ

. (17)

Since equilibrium profits of a firm at time t depend only on the state, s, the information about 
the firm’s future profits can be summarized in an S-vector, π , where πs is the profit in state s. 
We also define the S-vector V , where Vs represents the current value of the firm if the current 
state is s. This value is the discounted value of a perpetuity of stochastic cash flows beginning in 
the next period.

Because of the Markovian structure of the state space (1), we have P(st+k = j |st = i) =
[Φk]i,j , k ≥ 0. The time-0 value of an Arrow–Debreu security that pays one Dollar at time t in 

state j , given that s0 = i, is therefore ADt
ij = δt

C
−γ
j

C
−γ
i

[Φt ]ij . We define the diagonal matrix Λm

with its sth diagonal element made up by the marginal utility in state s, [Λm]ss = ms = C
−γ
s , 

and we can then write the value as ADt
ij = δt [Λ−1

m ΦtΛm]ij .
Using the Arrow–Debreu security prices, period-by-period and state-by-state, we obtain:

Lemma 2. The state-contingent valuation V of a stochastic profit stream π is given by:

V = [
Λ−1

m (I − δΦ)−1Λm − I
]
π. (18)

This pricing formula differs from a risk neutral economy, in which there would be no marginal 
utility terms Λm (or, equivalently, it would be the case that Λm = I ). The term Λm summarizes 
how valuations—and thereby the decisions of firms—are affected by risk aversion (through γ ), 
aggregate productivity shocks (through Ā), and misallocation (through η).

14 For a more extensive discussion, see, e.g., Duffie [18], Campbell [10], and references therein.
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3.3. Industry equilibrium

Understanding strategic price setting behavior in one industry z is the first step towards endo-
genizing the entire markups function M . We therefore characterize, as a function of industry and 
aggregate characteristics, when firms in a specific industry behave competitively, when monop-
olistic markups can be sustained, and when the outcome is neither of these extremes. Since each 
industry is small compared with the aggregate economy, firms in industry z take the dynamics of 
all other industries as exogenously given, i.e., they take M as exogenously given for all z′ �= z. In 
particular, the S × 2 matrix consisting of the vectors C and M̄ are jointly sufficient in describing 
the economic environment for one particular industry.

It is helpful to write real firm profits in sector z as a function of the choice variable Ms(z) and 
the exogenous variables C, M̄ and α(z). The expression follows directly from Lemma 1:

πs(z) = αs(z)CsM̄
θ−1
s

Ms(z) − 1

Ms(z)θ
. (19)

While Cs and M̄s are macro variables and hence affect all industries in a systematic fashion, the 
industry-specific productivity shock αs(z) affects by definition only industry z. Note that industry 
z profits depend positively on the aggregate market power M̄s since goods are substitutable (with 
θ > 1).

In each state, s, firms in an industry choose the vector of state contingent markups to maximize 
the value function, Vs(z), given the value maximizing behavior in each of the other states of the 
world, V−s(z), and subject to incentive compatibility ( Vs+πs

N(z)
≥ πs ),

Vs(z) = arg max
Ms

Vs(z)|V−s(z), (20)

for all s. Here, Ms maps to Vs via (18), (19).
Within our model’s setting, finding the solution to the optimization problem (20) is straight-

forward by exploiting the linearity of the objective function and the constraints in profits. Since 
profits are not only affected by the choice of markups, but also the exogenous variables α, C
and M̄ , we normalize profits (19) by monopoly profits πm

s (z):

πN
s (z) ≡ πs(z)

πm
s (z)

= Ms(z) − 1

Ms(z)θ

(Mm)θ

Mm − 1
. (21)

This normalization provides a state-independent bijection with πN
s ↔ Ms , where 1 ≤ Ms ≤ θ

θ−1
and 0 ≤ πN

s ≤ 1. We also define the corresponding inverse function μ:

Ms(z) ≡ μ
(
πN

s (z)
)
. (22)

To capture the joint effect of the variables α, C and M̄ , it is useful to define a summary statistic 
of the severity of state-wise incentive constraints, ICs(z):

ICs(z) = αs(z)C
1−γ
s M̄θ−1

s . (23)

Intuitively, ICs(z) consists of the state component of the current-period industry profit, 
αs(z)CsM̄

θ−1
s , weighted by marginal utility C−γ

s . The importance of this marginal utility ef-
fect is stronger the higher the risk-aversion coefficient γ . We collect ICs(z) in a diagonal matrix 
ΛIC , so that the elements satisfy [ΛIC(z)]ss = ICs(z).
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Using the definition of IC(z) and πN(z), the dynamic equilibrium can now be viewed as a 
simple linear programming problem in which firms choose normalized profits πN

s (z) ≤ 1 instead 
of Ms in (20):

Proposition 1. Given C and M̄ , the industry equilibrium outcome is uniquely determined by the 
solution to the following linear program.

πN(z) = arg max
π̂N

1T π̂N , s.t., (24)

π̂N ≤ 1, (25)

0 ≤ [
(I − δΦ)−1 − N(z)I

]
ΛIC(z)π̂

N . (26)

The corresponding equilibrium markups satisfy Ms(z) = μ(πN
s (z)). Unless the incentive con-

straint (26) binds in state s, the monopolistic outcome obtains, Ms = Mm.

The specific form of the incentive constraint, Vs+πs

N(z)
≥ πs (and its matrix counterpart (26)), 

implies economically that an increase in the markup in state s′, relaxes the incentive problem 
in all other states s �= s′ due to an increase in Vs .15 Thus, the dynamic optimization (20) can 
be represented as a static, state independent, linear programming problem (see simple objective 
(24)). Inspection of the program reveals that the exogenous variables αs , Cs and M̄s only affect 
the incentive constraint via ICs(z), giving it a key role for the comparative statics analysis (see 
subsequent Proposition 3).16

Going forward, it will be important to understand when the incentive constraint binds, so equi-
librium markups deviate from the monopoly markup in at least some state. From (26), monopoly 
markups, Mm = μ(1), are sustainable in all states if and only if

[
(I − δΦ)−1 − N(z)I

]
ΛIC(z)1 ≥ 0. (27)

By rearranging (27) for N(z), we obtain a closed form expression for the threshold number of 
firms an industry, Nm(z), for which monopolistic markups are sustainable for all s

Nm(z) = min
s

Λ−1
IC(z)(I − δΦ)−1ΛIC(z)1 (28)

Intuitively, while for a small number of firms N(z) ≤ Nm(z), the monopoly outcome is sus-
tainable in all states, too many firms in one industry, N(z) > Nc, imply the competitive outcome 
in all states. Only in the intermediate region may markups vary across states. This intuition is 
formalized in the following Proposition.

Proposition 2. Given aggregate consumption C and the average markup M̄ , the equilibrium 
outcome satisfies:

15 Recall that Φ is irreducible, so state s′ will be reached with positive probability, regardless of the initial state s.
16 Note that the s-th element of the vector ΛIC(z)π̂

N is simply given by: π̂N
s ICs (z).
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Fig. 2. Left panel: This graph plots the state contingent normalized profits of one particular industry given aggregate 
consumption of C = (1, 1.25, 1.875)T , aggregate markups of M̄ = (1, 1, 1)T , and industry-specific shocks of α(z) =
(1, 1, 1)T . We set γ = 2. If there are fewer than 8 firms in the industry, monopoly markups are sustainable in all states. 
Increasing the number of firms further causes the incentive constraint in state 1 to bind first, then in state 2 (at N = 9) 
and finally, at NC = 10, all markups collapse discontinuously to the competitive outcome. Right Panel: The right panel 
plots the corresponding markups as a function of normalized profits.

Normalized Profits Markups

πN
s (z) = 1 Ms(z) = θ

θ − 1
for N(z) ≤ Nm(z),

πN
s (z) ∈

(
IC(z)

ICs(z)
,1

]
Ms(z) ∈

(
μ

(
IC(z)

ICs(z)

)
,

θ

θ − 1

]
for N(z) ∈ (

Nm(z),Nc
)
,

πN
s (z) = IC(z)

ICs(z)
Ms(z) = μ

(
IC(z)

ICs(z)

)
for N(z) = Nc,

πN
s (z) = 0 Ms(z) = 1 for N(z) > Nc,

where IC(z) = mins ICs(z) and Nc def= 1
1−δ

.

Before highlighting the general implications of Proposition 2, it is useful to illustrate the 
different regions in a stylized example with S = 3 states: Assume that aggregate consumption 
across states is C = (1, 1.25, 1.875)T and that aggregate markups are competitive in all states, 
M̄ = (1, 1, 1)T . The transition between states is i.i.d. with all states being equally likely. Prefer-
ence parameters are given by δ = 0.9, γ = 2, and θ = 3. Consider now an industry that moves 
one-to-one with the aggregate, i.e., α(z) = (1, 1, 1)T .

Since this example only features variations of aggregate consumption, we obtain ICs(z) =
C

1−γ
s implying that the incentive problem is most severe in state 1 as IC1 > IC2 > IC3. We 

immediately obtain from Eq. (28) that Nm = 8. Thus, monopoly markups of Mm = θ
θ−1 = 3

2 are 
sustainable in all states if the number of firms satisfies N ≤ Nm = 8. This can be directly inferred 
from Fig. 2 which plots the optimal state-contingent normalized profits (left panel) and markups 
(right panel) as a function of the number of firms, confirming the four cases in Proposition 2. 
As soon as the number of players exceeds Nm = 8, the binding incentive constraint in state 1
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pins down markups in state 1 while monopoly markups are initially still sustainable in states 2
and 3. When N exceeds 9 firms, monopoly markups can no longer be sustained in state 2 either. 
Interestingly, the binding incentive constraint in state 2 also has a (negative) feedback effect on 
the ability to collude in state 1 since the present value of future collusion profits is lowered in 
state 1, causing the kink in the state 1 markup function at N(z) = 9.17 Finally, given δ = 0.9, 
the threshold number of firms that induces the competitive outcome in all states is given by 
Nc = 10. This threshold Nc = 1

1−δ
only depends on the discount rate and is therefore independent 

of industry characteristics. The corresponding normalized profits are obtained in closed form: 
πN

s (z) = IC(z)

ICs (z)
so that Ms(z) = μ(

IC(z)

ICs (z)
).18

We now return to our general analysis. From Proposition 2, one can immediately deduce that 
for all N(z) ≤ Nc there exists at least one state s in which the monopolistic outcome obtains, 
in particular the state(s) satisfying ICs(z) = IC(z) (such as state 3 in the left panel of Fig. 2). 
Intuitively, if there is no variation in incentive problems across states, i.e., ICs(z) = ICs′(z)
for all s, s′, then ICs(z) = IC(z) for all s and the monopoly outcome obtains in all states for 
N(z) ≤ Nm = Nc (and the competitive outcome obtains for N(z) > Nc). This insight leads to 
the following necessary conditions for markup variation across states:

Lemma 3. Equilibrium markups may only vary across states if the following conditions are both 
satisfied:

a) ICs(z) �= ICs′(z) for some s, s′, and
b) Nm(z) < N(z) ≤ Nc.

If the intuitive conditions of a) time-varying incentive problems and b) intermediate com-
petitiveness are satisfied, markup variation occurs on the equilibrium path. This motivates the 
following comparative statics analysis:

Proposition 3. Equilibrium markups, Ms(z), depend continuously on C, M̄ , α and Φ .

1. Equilibrium markups, Ms(z), are decreasing in N(z) for each s.
2. Equilibrium markups, Ms(z), are decreasing in ICs′(z) for s = s′ and increasing in ICs′(z)

for each s �= s′.

Continuity of markups is an important technical ingredient for the proof of Proposition 4. 
The intuitive, inverse relationship between markups and the number of firms N (comparative
static 1) can be immediately verified in the left panel of Fig. 2. The comparative statics of 
ICs(z) = αs(z)M̄

θ−1
s C

1−γ
s represent a fundamental result of our analysis by relating the cycli-

cality of markups to α, M̄ and C. An increase in ICs(z) will lower markups in that state (also 
compared to markups in other states s′ �= s). Since ICs is increasing in α and M̄ , the compar-
ative statics thus imply that markups are countercyclical with respect to the industry-specific 
component of profits α, and the average markup across all industries M̄. Thus, markups exhibit 
strategic substitutability. Intuitively, when all industries charge on average a higher markup M̄s

in a given state, profits for a particular industry in that state will be higher since goods are sub-

17 This graph implicitly treats N as a positive real number.

18 It is easy to verify that for θ = 3, we obtain that μ(x) = 3√ cos
( arctan

√
1−x
x +π )

.

x 3
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stitutable (see (19)). This increases the incentive to deviate, ICs , and hence results in a lower 
equilibrium markup. Interestingly, the definition of ICs(z) implies that the dependency on aggre-
gate consumption crucially depends on the risk aversion parameter γ , which we summarize in 
the following immediate corollary:

Corollary 1. Aggregate consumption shocks and markup cycles:

1. If γ < 1, equilibrium markups, Ms(z), are decreasing in Cs′ for s = s′ and increasing in Cs′
for each s �= s′.

2. If γ = 1, equilibrium markups are independent of Cs for all s.
3. If γ > 1, equilibrium markups, Ms(z), are increasing in Cs′ for s = s′ and decreasing in Cs′

for each s �= s′.

To understand why the threshold level for procyclicality is given by γ = 1, it is useful to 
separate out the forces of aggregate demand ys and Cs in the definition of the summary statistic 
ICs(z), i.e., ICs(z) = αs(z)YsM̄

θ−1
s C

−γ
s . Higher aggregate demand (c.p.) increases the tempta-

tion to deviate while lower marginal utility (higher C) reduces the incentive to deviate.19 Since 
aggregate demand and consumption coincide in our framework, i.e., Ys = Cs , the two forces ex-
actly offset each other for γ = 1.20 In the left panel of our example above, we set γ = 2 leading 
to procyclical markup variation when N(z) ∈ (8, 10], i.e., M1(z) ≤ M2(z) ≤ M3(z). In Fig. 3 we 
show the effect of varying γ (fixing N at Nc) on the cyclicality of markups.

Why does higher risk aversion, or equivalently lower EIS = 1
γ

, make it more attractive to de-
viate in bad times despite smaller profits? In bad times, the marginal value of consumption is 
higher causing today’s valuations of future profits to be lower (see discussion in Section 3.2.2). 
Loosely speaking, when γ > 1 (EIS < 1) value-maximizing firms are (sufficiently) more desper-
ate for an additional dollar in recessions. The marginal utility channel thus overturns the result 
of Rotemberg and Solaner [42].21 Since misallocations through markup dispersion across indus-
tries feed back into the industry problem only via Cs = Asηs , the importance of this feedback 
effect relates to γ as well. For logarithmic utility (γ = 1), misallocations are thus irrelevant for 
the industry outcome.

3.3.1. Endogenous entry
Before characterizing the general equilibrium implications, we briefly discuss the robustness 

of our results to endogenous entry. While our model technically does not allow for entry, let us 
now assume that an industry entrant faces a one-time entry cost of φ > 0 to be able to enter the 
industry at t + 1. Clearly, the decision of the entrant in an industry with currently N0(z) players 
depends on the assumed continuation equilibrium of that industry upon entry of an additional 
firm.

19 We thank an anonymous referee for suggesting this intuitive decomposition.
20 While the exact threshold value for procyclicality of γ = 1 is a result of the equivalence of ys and Cs , the general 
impact of discount rates qualitatively extend to setups when consumption and aggregate output are not identical, but 
positively correlated (such as in an economy with investment). In fact, when C is a linear function in y our results would 
apply one-to-one.
21 Of course, if one considers specific aggregate shocks that purely affect y but do not (immediately) affect C, such as 
government expenditures in Rotemberg and Woodford [43], then markups are still countercyclical with respect to these 
shocks. However, in general, aggregate shocks both affect aggregate demand and consumption. Therefore, the cyclicality 
of markups relates to γ , see Corollary 1.
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Fig. 3. For the case N(z) = Nc , we plot the effect of the risk aversion parameter γ on the cyclicality of markups. 
Consumption is increasing in the state, s, C = (1, 1.25, 1.875)T , and all other parameters are also as in Fig. 2. Markups 
are countercyclical for γ < 1 (higher in states with lower consumption) and procyclical for γ > 1 (higher in states with 
higher consumption). The benchmark case of γ = 2 is highlighted with circles.

It is natural to select the equilibrium outcome described in Proposition 2, using N(z) =
N0(z) + 1 as the post-entry equilibrium. Then, a firm will have a strict incentive to enter in 

state s if V N0(z)+1
s > (N0(z) + 1)φ where V N0(z)+1

s is the present value of industry profits with 
N0(z) + 1 firms. Of course, a similar argument applies with N0(z) + 1 as the starting number 
of firms. Since the maximum number of firms in an industry is bounded above by Nc (due to 
positive entry cost), the decision of a potential entrant in an industry with N0(z) = Nc − 1 plays 
a special role by backward induction22: As long as V Nc

s (z) > Ncφ for at least one state s, an 
industry will be populated by Nc firms in the long run. Thus, for sufficiently low entry cost the 
tightly characterized special case of N(z) = Nc represents an economically meaningful outcome 
in an economy with endogenous entry.

Interestingly, in our model equilibrium profits and markups do not approach zero as the entry 
cost becomes arbitrarily small. This is because profits/markups are discontinuous at Nc (see 
Fig. 2). We will revisit the important special case of N = Nc in general equilibrium to obtain 
additional insights.

4. General equilibrium

4.1. Existence and uniqueness conditions

We show the existence of general equilibrium in which firms in each industry choose optimal 
markups given the (optimal) markups chosen by firms in all other industries. Recall that the econ-
omy’s environment is characterized by the tuple E , i.e., by the real variables α : S ×[0, 1] → R+, 

22 This follows from the fact that industry profits are decreasing in number of firms, which is a direct consequence of 
Proposition 3.
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N : [0, 1] → N, g ≥ 0, Ā ∈ R
S++, the irreducible aperiodic stochastic matrix, Φ ∈ R

S×S++ , and the 
preference parameters, γ , θ , and δ. We note that a given equilibrium is completely character-
ized by the markup function, M : S × [0, 1] → [1, θ

θ−1 ], together with E , since all other real and 
financial variables can be calculated from M and (13)–(19). This motivates the following

Definition 1. General equilibrium in economy E is given by a markup function M : S ×[0, 1] →
[1, θ

θ−1 ] for which,

1. M̄ and C are defined by Eqs. (13) and (15),
2. For all z, M(z) is the solution to the maximization problem given by Eqs. (24)–(26), with 

Ms(z) = μ(πN
s (z)).

We note that the existence and uniqueness of the second part of the definition is guaranteed by 
Proposition 1, industry by industry, i.e., given M̄ and C there is a unique optimal markup func-
tion. It is a priori unclear, however, whether there exists a general equilibrium, i.e., whether both 
parts can be solved simultaneously. In other words, both the mappings, M 	→ (M̄, C) (part 1) 
and (M̄, C) 	→ M ′ (part 2) are well defined, but it is unclear whether M can be chosen such that 
the second step maps to the same markup function that was used in the first step, i.e., such that 
M ′ = M .

It turns out that we are able to prove the existence of equilibrium under very general condi-
tions. Specifically, we assume that the functions N and α are Lebesgue measurable functions, 
and impose the following technical condition:

Condition 1. For all s, for almost all z, c0 ≤ αs(z) ≤ c1 for constants, 0 < c0 ≤ c1 < ∞.

We now have the following general result:

Proposition 4. General equilibrium exists in any economy that satisfies Condition 1.

Thus, only the technical conditions of integrability and boundedness of productivity func-
tions across industries are needed to ensure the existence of equilibrium. The generality of this 
existence result is a priori quite surprising. In static general equilibrium models with imperfect 
competition, additional conditions in the form of quasi-concavity of firms’ profit functions, and 
uniqueness of market clearing price functions given a productive allocation, are typically needed 
to show the existence of general equilibrium (see Gabszewicz and Vial [23], Marschak and Selten 
[36], and Benassy [5]). These conditions are indeed satisfied in our model, as seen in Section 2.1. 
Instead, the major challenge is the dynamic setting, where the move from a static to a dynamic 
Bertrand game between firms drastically enlarges the strategy space. Since all firms are inter-
twined through the effects their actions have on the pricing kernel, showing the existence under 
general conditions seems out of reach. Previous literature (e.g., Rotemberg and Woodford [43], 
Gali [24], and Schmitt-Grohe [45]) has avoided the issue by assuming complete symmetry, in 
which case the state space collapses. Of course, the focus on symmetric economies also restricts 
the type of effects that may arise, e.g., in terms of efficiency losses.

The reason why existence is still provable in our setting is the special structure of the model. 
The key property is that the game played between firms is simple enough that we can com-
pletely characterize their behavior under general parameter values and show that this behavior has 
some needed properties. Specifically, the structure of firms’ constrained optimization problems 
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in Eqs. (24)–(26) allows us to show uniqueness and uniform continuity of industry outcomes with 
respect to all parameters. This follows from two properties of the optimization problem. First, 
the objective function is linear. Second, the IC constraints have a specific form such that (i) for 
any number of firms less than the competitive threshold, N < Nc , the domain of optimization 
is uniformly bounded, closed, convex with nonempty interior, (ii) for industries with N = Nc

the domain is a closed bounded line, and (iii) for industries with N > Nc the domain contains a 
single point, the origin. These properties imply well behaved (unique and uniformly continuous) 
outcomes industry-by-industry, which in turn implies that the mapping M 	→ (M̄, C) 	→ M ′ is 
continuous (in the function space L1).

Technically, the proof of Proposition 4 depends on Schauder’s fixed point theorem.23 Specif-
ically, it is shown in the proof of Proposition 4 that the space of markup functions is compact 
and convex, which, via Schauder’s theorem, then guarantees the existence of a fixed point, i.e., 
an equilibrium. Details are given in the proof.

We note that Proposition 4 makes no claim as to equilibrium uniqueness. Uniqueness of equi-
libria can, however, be proved for the important benchmark case of homogeneous industries.

Proposition 5. If industries in the economy E are homogeneous, i.e., if as(z) ≡ 1, for all z and s, 
and N(z) ≡ N for all z, then the equilibrium is unique.

Thus, if N(z) ≡ N and each industry moves one-to-one with the aggregate shock Ā, the in-
dustry outcome must not only be identical across industries, Ms(z) = M̄s , but M̄s is also unique. 
Note that uniqueness and Pareto optimality of aggregate consumption, Cs = Ās , follow directly 
from the lack of markup dispersion across industries (see Proposition 1).

Using the special case of homogeneous industries also allows us to cleanly illustrate that our 
result concerning pro- versus countercyclicality of markups is independent of misallocation and 
survives in general equilibrium. To make this result particular transparent, let us again consider 
the special case of N(z) = Nc . In general equilibrium, the previously exogenous average markup 
across industries, M̄s , is now endogenous. We obtain a simple, closed-form expression for the 
resulting general equilibrium markups:

Lemma 4. If industries are homogeneous and N(z) = Nc , then markups in each industry are 
given by:

Ms(z) = M̄s = θ

θ − Ā
γ−1
s

maxj (Ā
γ−1
j )

. (29)

If γ > 1, markups are procyclical. If γ < 1, markups are countercyclical.

While the remaining results of the paper will be concerned about misallocation arising from 
differential behavior of industries, the detailed analysis of homogeneous industries proved useful 
by highlighting that the cyclicality of markups is unrelated to heterogeneity. We now turn to 
the question of how misallocation dynamics can arise endogenously when we depart from the 
homogeneity assumption.

23 We use this theorem because we have a continuum of industries.
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Table 1
Economy with two industries and two states.

Type, j Ij α1(Ij ) α2(Ij )

1 z ∈ [0,0.5) 1 1
2

2 z ∈ [0.5,1] 1 3
2

Ā Ā1 = 1 Ā2 = 1

4.2. Endogenous misallocation dynamics

What drives misallocation and misallocation dynamics? We know from the previous section 
that the realistic feature of industry heterogeneity must play an important role. While our rich 
framework allows us to introduce heterogeneity in terms of shock exposures α(z) and the num-
ber of firms N(z) across a continuum of industries for an arbitrary number of states, we want to 
present simple, stylized examples to highlight the economic intuition. It is important to empha-
size that the chosen parametrizations should therefore not be interpreted as real world calibrations 
of our framework. In the first example, presented in Section 4.2.1, we show how industry-specific 
shocks can be transmitted to the aggregate economy. Subsequently, Section 4.2.2 shows that 
small technological shocks may be amplified through feedback effects from the strategic behavior 
of other industries. Indeed, these feedback effects are sufficiently strong to generate multiplicity 
of equilibria.

4.2.1. Transmission of industry-specific shocks
We first consider an example without aggregate shocks that departs from homogeneity in the 

simplest possible way. There are two different types of industries, j ∈ {1, 2} such that all indus-
tries z ∈ Ij share the same industry-specific shocks α (see Table 1). Half of the industries are of 
type 1 and half of the industries are of type 2. Low entry cost in all sectors of the economy ensure 
that N(z) = Nc for all z. Thus, the only source of heterogeneity results from industry-specific 
shocks:

By construction, industry-specific shocks “average out” across industries, state by state. How-
ever, we note that the optimal choice of markups is influenced by differential incentives to 
deviate across states, industry by industry. As a result, intertemporal incentive constraints do 
not “average out” and misallocation may arise. Since N(z) = Nc, Proposition 2 implies that the 
equilibrium outcome for industry Ij given the macro states is πN

s (Ij ) = IC(Ij )

αs(Ij )η
1−γ
s M̄θ−1

s

using 

Ās = 1.
Consider now the benchmark case of log utility (γ = 1) so that the feedback channel via 

misallocation ηs is shut down (see Corollary 1). Firms in industry 1 have the highest incentive 
to deviate in state 1 since the industry-specific shock in state 1, α1(I1) = 1, is twice as high as 
compared to state 2, α2(I1) = 1

2 . Therefore, M1(I1) < M2(I1) = Mm. By the same rationale, 
industry 2 features low markups in state 2, M2(I2) < Mm, and monopolistic markups in state 1. 
The resulting markup dispersion across industries in state 1 and state 2 implies the first immediate 
result: Industry-specific shocks alone can lead to misallocation.

Using θ = 3 (see e.g., Fernandez-Villaverde et al. [21]), we obtain the following, unique
equilibrium outcome, which is independent of the transition matrix φ (as N = Nc):



146 M.M. Opp et al. / Journal of Economic Theory 154 (2014) 126–161
Outcomes s = 1 s = 2
M(I1) 1.09 1.5
M(I2) 1.5 1.16

C = η 0.966 0.986

(30)

In this example, strategic industry behavior does not only cause inefficiencies via the channel 
of misallocation, but misallocation is also time varying, i.e., η1 < η2 < 1. An economy without 
aggregate shocks, Ā1 = Ā2 = 1, now features endogenous volatility with a 2% difference in 
aggregate consumption.

What causes higher dispersion of markups in state 1 than in state 2? To get the intuition behind 
this asymmetry, observe that the structure of the industry-specific shocks implies that industry 1
faces a higher (a 2 : 1) incentive to deviate in state 1, whereas industry 2 faces a lower (a 3 : 2) 
incentive to deviate in state 2. In equilibrium, this asymmetry is reflected in lower markups in 
industry 1 in the state where the deviation temptations are largest; creating higher dispersion 
between the low markup in industry 1 and the monopoly markups of industry 2 in state 1.24

Thus, the state with higher dispersion of industry-specific shocks, state 2, actually features lower 
dispersion of equilibrium markups. The example shows that misallocation results from a subtle 
mechanism, namely how the industries’ ability to “collude across states” varies across industries.

By setting γ = 1, the example so far deliberately shuts down the feedback effect of mis-
allocation into the industry optimization problem. We now consider the feedback effects of 
misallocation as we increase γ above 1. In asset pricing, values of γ between 1 and 10 are 
considered reasonable (see Mehra and Prescott [37]). By Corollary 1, higher risk aversion will 
facilitate collusion in the state with high aggregate consumption, i.e., state 2, and increase the 
incentive to deviate in state 1. This in turn creates downward pressure on markups of industry 1
in state 1 and will allow industry 2 to sustain markups above 1.16 in state 2. This adjustment 
of markups aggravates the differences in aggregate consumption by causing higher dispersion in 
state 1 and higher efficiency in state 2, leading to further feedback. The higher γ , the stronger the 
feedback effects in general equilibrium. When γ = 10, consumption values in state 1 and state 2
of the unique equilibrium are given by 0.963 and 0.99, thus raising the consumption difference 
across states by 36% relative to the benchmark case of logarithmic utility.

Finally, the just presented example allows us to highlight that the equilibrium outcome at the 
threshold level of Nc = 1

1−δ
is extremely sensitive to (unexpected) changes in the discount rate: 

An arbitrarily small decrease in the discount factor δ will take the economy from the unique 
collusive outcome to the unique efficient, competitive outcome with C1 = C2 = 1, regardless 
of γ .

4.2.2. Shock amplification
The previous example revealed how purely industry-specific shocks are transmitted to the ag-

gregate economy, leading to sizeable aggregate fluctuations. We now study an example in which 
small aggregate shocks are amplified through the feedback effect via the stochastic discount fac-
tor. We will choose the parametrization in such a way that these feedback effects are so strong 
that multiple equilibria arise.

In particular, consider the economy described in Table 2, with three distinct types of industries, 
I1, I2 and I3, and S = 2 states. Thus, there is one very small industry (I1), one large industry (I2), 

24 A second channel is given by the α weights in calculating dispersion. While both industries are equally weighted in 
state 1, industry 2 has an effective weight of 3 in state 2, mechanically creating less dispersion.
4
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Table 2
Economy with three industries and two states.

Type, j Ij N A1 A2 α1 α2

1 z ∈ [0,0.02) 19 0.25 1 0.8728 1
2 z ∈ [0.02,0.81) 19 1 1 1.0026 1
3 z ∈ [0.81,1] 1 1 1 1.0026 1

Ā Ā1 = 0.974 Ā2 = 1

Φ =
[

0.7 0.3
0.3 0.7

]
, γ = 6, θ = 1.1, δ = 0.95

and one medium-sized industry (I3). The first two industries have many firms, N = 19, but they 
will still not be perfectly competitive, since Nc = 1

1−δ
= 20. The third industry is monopolis-

tic so that it will charge the markup θ
θ−1 regardless of the behavior in the first two industries. 

Columns 4 and 5 in Table 2 describe the absolute productivity shocks, A, in the two states. We 
see that only the very small first industry experiences any variation in productivity across the two 
states. The aggregate variation in productivity will therefore be small. In columns 6 and 7, we 
show the decomposition of the absolute productivity shocks into industry-specific and aggregate 
components, α and Ā (see Eqs. (11) and (12)).25 The effect on aggregate productivity of the 
first industry’s shock is about 2.5%, since aggregate productivity is 0.974 in the low-productivity 
state and 1 in the high-productivity state. This would also be the aggregate consumption in the 
two states in an efficient equilibrium.

Before analyzing the equilibrium in this economy, it is instructive as a reference case to study 
the economy which is identical to that in Table 2, except for that A1 = 1 in industry 1. Hence, 
this is an economy with no productivity shocks, neither industry-specific nor aggregate, and it 
follows that Ā1 = Ā2 = 1 and αs(z) ≡ 1 in this reference economy. One easily verifies that the 
monopolistic outcome, in which markups M ≡ θ

θ−1 = 11 are chosen by all firms in all states, is 
feasible in this case (this also follows as a consequence from Lemma 3), leading to the efficient 
outcome where C1 = Ā1 = 1, C2 = Ā2 = 1.

However, the efficient outcome cannot be sustained as an equilibrium in an economy with 
small productivity shocks. Instead, the following markup choices constitute an equilibrium out-
come

Equilibrium 1
Markups s = 1 s = 2
M(I1) 1.493 11
M(I2) 1.4 11
M(I3) 11 11

C 0.782 1

(31)

Thus, the small aggregate productivity shock (≈ 2.5%) leads to a significant decrease in equi-
librium output (≈ 22%) in state 1. The intuition for why amplification occurs in this example is 
exactly in line with our main theme in this paper, that technological shocks which are small in 
aggregate — in that they only affect a few industries — change the strategic behavior of firms in 
other industries through the effect they have on the pricing kernel.

25 Note that the shock to industry 1 also affects the relative productivity in industries 2 and 3, since α is normalized to 
sum to one across industries, state by state.
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Fig. 4. In each of the 4 panels, we plot incentive compatible and feasible normalized profits in both states of the world. 
Feasibility refers to the upper bound imposed by monopoly profits in each state, i.e., πN

s ≤ 1. Incentive compatibility 
in both states is governed by two lines. The upper line refers to the IC constraint in state 2. The lower one refers to the 
IC constraint in state 1. The upper 2 panels refer to the benchmark economy with identical industries. The outcome in 
industry 1 (2) is plotted on the left (right). In both industries and states monopolistic profits are sustainable. Below, we 
only plot the relevant IC constraint in state 1. Monopolistic profits violate IC constraint in state 1 for industry 2 (line A), 
in turn changing the IC constraints in state 1 for industry 1 (line B). The resulting equilibrium (line D) is substantially 
different.

This mechanism is explained in Fig. 4, focusing on the behaviors of industries 1 and 2.26 In 
the upper part of the figure, the reference economy with identical industries is shown, in which 
case monopolistic profits are feasible for both industries, i.e., normalized profits πN

s (Ij ) = 1
for both industries and states. In the lower part of the figure, the economy in Table 2 is shown. 
Line A shows the relevant IC constraint in state 1, given the pricing kernel in the monopolistic 
outcome. Monopolistic profits are indeed feasible in industry 1 (lower left figure), but infeasible 
in industry 2 (lower right figure). Thus, the lower productivity in industry 1, through its effect 
on the pricing kernel, affects the outcome in sector 2, which moves the IC constraint in state 
1 to line B. This in turn changes the pricing kernel even further, making monopolistic profits in 
industry 1 infeasible and further changing the outcome in industry 2, moving to lines C in the two 

26 Industry 3 is always monopolistic. The reason that it is still important for the example is that substantial efficiency 
losses only occur when there is high variability in markups across sectors. If industry 3 was not present then the economy 
would always be close to efficient, since markups would be the same for the vast majority of industries in each state — 
almost identical to the markups charged in industry 2. In contrast, when industry 3 is present and industry 2 charges low 
markups, efficiency will be low.
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industries, and generating further feedback effects. The ultimate effect of this mechanism is that 
the equilibrium moves to line D in the two figures, substantially different from the monopolistic 
equilibrium in the reference economy.

We just highlighted the important role of feedback effects via the stochastic discount factor 
for equilibrium behavior of industries. Indeed, the feedback effects can be so strong that another 
equilibrium is consistent with the optimizing behavior of all industries. It can be verified that 
the heterogeneous economy E parameterized in Table 2 exhibits (exactly) one more equilibrium 
supported by the following markups:

Equilibrium 2
Markups s = 1 s = 2
M(I1) 11 1.69
M(I2) 11 1.904
M(I3) 11 11

C 0.974 0.841

(32)

Again, aggregate fluctuations are endogenously determined. However, the second equilibrium is 
very different from the first one. First, although state 1 is the state that experiences the negative 
aggregate productivity shock, aggregate output is lower in state 2 due to the high dispersion 
of markups across industries (causing misallocation). Thus, there is a second way to ensure 
that firms do not deviate from equilibrium strategies, namely to decrease the attractiveness of 
state 2. A drop in consumption in state 2 via misallocation makes deviation more attractive in 
that state since γ > 1. This causes industries 1 and 2 to lower their markups in state 2 compared 
to the monopolistic industry 3, implying high markup dispersion which sustains the equilibrium 
outcome.

We note that multiplicity of equilibria is not a generic feature of our framework, but instead 
requires parametrizations that allow feedback effects of misallocation to be strong. The dual 
task of this stylized example to feature multiplicity and amplification, requires γ to be high (see 
Corollary 1) and θ to be low, making large variation between equilibrium markups across in-
dustries possible. However, we want to note that we can obtain significant amplification even in 
large-scale settings with standard parameters such as θ = 3, (see e.g., Fernandez-Villaverde et al. 
[21]) and γ = 3.27 Equilibrium multiplicity in models with markups, in the form of stationary 
sunspot equilibria, have also been generated in Gali [24] and Schmitt-Grohe [45]. The analysis 
in Gali [24] especially has similarities to ours in that he assumes linear production technologies 
and also covers the case with inelastic labor supply. However, his mechanism is different from 
ours. Since he focuses on the symmetric case with monopolistic competition, there is no role 
for heterogeneity in markups across firms, and the corresponding inefficiencies that such hetero-
geneity creates. Instead the multiplicity of equilibria arises because of self-fulfilling expectations 
about future growth rates. In our setup, industry homogeneity implies uniqueness as it prohibits 
efficiency losses due to cross-sectional variation of markups and hence shuts down the feedback 
channel through the pricing kernel.

27 In a numerical exercise, we calculate the equilibrium outcome of 1000 economies with 10 000 industries each. For 
each economy, industry-specific shocks and the number of firms were randomly generated. The assumed distributions 
of technology shocks implied a small aggregate productivity shock of �A = |Ā2 − Ā1| ≈ 0.22% across the 1000 sim-
ulations, resulting in a large shock to GDP/consumption, �C = |C2 − C1| ≈ 0.82%. The GDP shocks are therefore on 
average about 3.8 times larger than the productivity shocks.
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5. Empirical implications

Our theory has testable empirical implications for markup-cyclicality, for industries’ joint 
effect on aggregate efficiency and economic activity, and for how strategic interaction at the 
industry level affects these aggregate variables in general equilibrium. While a rigorous empir-
ical examination is beyond the scope of this theory paper, we summarize these implications, to 
provide a basis for future research.

First, our model has implications for the cyclicality of markups. To highlight the intuition for 
the sources of markup cyclicality and the sources thereof, it is useful to analyze the special case 
of an industry at the competitive threshold, i.e., N(z) = Nc, which should apply for any industry 
with small entry cost. Proposition 2 then implies the following structural expression for markup 
changes using Ms(z) = μ(πN(z)).

� logπN(z) = −� logα(z) − (θ − 1)� log M̄ + (γ − 1)� log(C) (33)

where � logx stands for logxs − logxs′ . One may empirically estimate the relevance of the 
three factors presented in (33) via a standard time-series regression, industry by industry. First, 
markups should be countercyclical with respect to the industry-specific shock component α. To 
estimate the coefficient correctly, it would be important to use a raw measure of underlying 
demand/productivity shocks, i.e., a measure that is not contaminated by the endogenous markup 
choice (the left hand side measure). Second, markups are negatively related to average markups 
across industries since goods are substitutes. Third, the coefficient on the aggregate shock C
depends on the risk aversion parameter γ . While our model features equivalence of Y and C, 
it may be empirically reasonable to both include Y , the aggregate demand channel, and C, the 
marginal utility channel, to account for the discrepancy between the two quantities in the data.

Second, in the aggregate, our model relates variation in economic activity to variations in 
allocative efficiency and technological shocks, i.e., Ct = Atηt . Since empirical studies are mostly 
concerned with growth, it is useful to express this identity as:

�c = �a + �e, (34)

where ct = log(Ct ), a = log(Ā), e = log(η), and � refers to first differences. From this expres-
sion, it is immediately clear that amplification of technological shocks, i.e., greater consumption 
volatility than suggested by technological condition (σ�c > σ�a), occurs if and only if

ρ�a�e > −1

2

σ�e

σ�a

, (35)

where ρ�a�e measures the coefficient of correlation between �a and �e. As a result, two factors 
can give rise to amplification: a high variation in efficiency relative to the variation in productivity 
( σ�e

σ�a
) or a high positive correlation between efficiency and productivity (ρ�a�e), i.e., counter-

cyclical dispersion of markups. Both of these factors are quite intuitive. The relation allows one 
to estimate the importance of industry dynamics for aggregate fluctuations in the economy.

Finally, our model highlights the important role of industry characteristics capturing strate-
gic interaction, such as Herfindahl indexes across industries and the dispersion of industry-
specific shocks, for understanding the general equilibrium relationship between industry struc-
ture, markup variations, and aggregate fluctuations. In alternative theories of markup cyclicality, 
such as sticky-price models, such “strategic” variables would be irrelevant. We stress that the 
relationship is far more complex than simply one where less competition in an economy always 
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leads to higher efficiency losses, as discussed in Section 3.2.1. To assess whether strategic inter-
action at the industry level represents a quantitatively important source of aggregate fluctuations, 
it would be interesting to estimate our model structurally.

6. Concluding remarks

Our objective has been to understand the aggregate effects of strategic interaction between 
firms at the industry level. To achieve this, we develop a dynamic general equilibrium model fea-
turing a continuum of different industries, each of which comprises a finite number of firms. The 
framework is tractable, and the strategic interaction between firms in each industry is straight-
forward to characterize. We establish the existence of general equilibrium and establish dynamic 
properties of the economy including equilibrium markups, firm profits and aggregate consump-
tion.

The central premise of our model is that firms, maximizing shareholder value, are not always 
price takers but can be price setters. High prices in an industry can be sustained if firms value the 
future flow of profits over any immediate increases in market share garnered by undercutting. Of 
course, the rate at which future profits are discounted depends both on the representative agent’s 
preferences and on the behavior of the aggregate economy. Specifically, the misallocation of 
resources that arises from the equilibrium cross-sectional dispersion of markups affects aggregate 
consumption and therefore the representative agent’s valuation of future profits. This feedback 
effect between industry equilibrium and the macro economy is the central intuition in our paper.

The strategic interaction yields various general equilibrium effects that can be interpreted 
in light of the macro economy. Even in an economy with no aggregate uncertainty, if the 
relative productivity of various industries changes, so does their ability to sustain collusive out-
comes. These changes can affect both the level and the volatility of aggregate consumption. It 
is worthwhile to highlight how the interaction between industry heterogeneity and oligopolistic 
competition is key for our main general equilibrium effects: With fully flexible prices, dispersion 
of markups across industries can only arise if industries endogenously choose different markups. 
In an economy with homogeneous industries as in Rotemberg and Woodford [43], oligopolistic
competition must lead to identical markups across industries, precluding real effects via misal-
location. Under monopolistic competition it is irrelevant whether industries are heterogeneous, 
since all industries charge the same, monopoly markup. Thus, incorporating industry heterogene-
ity into a general equilibrium framework with oligopolistic competition generates a rich set of 
novel predictions.

An interesting implication of our analysis is that the social cost of collusion may be different 
from that calculated based on the forgone consumer surplus in any particular industry. Indeed, a 
standard partial equilibrium calculation, by definition, does not incorporate any social costs asso-
ciated with resource misallocation, aggregate fluctuations and the ensuring general equilibrium 
change in valuations across industries. Operationally, it would be difficult to incorporate such 
costs, however it does suggest that in many cases, the costs of tacit collusion may be higher than 
usually calculated and a macroprudential view of anti-trust provisions is called for. Vigorous 
anti-trust enforcement in only a subset of industries may actually be welfare-decreasing.

A potentially fruitful extension of our model would be to consider asset pricing implications. 
The subgame perfect industry equilibria that we characterize naturally pin down the future value 
of each firm’s cash flows. This of course, is the unlevered equity value of the firm. With an appro-
priate calibration, one could generate the relationship between returns, industry characteristics 
and the macro economy. We hope to explore these relationships in future research.
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Appendix A. Data

To compute the time series of misallocations, we require a panel data set with markups for a 
large number of industries (ideally all) in an economy. The requirement of a large cross-section 
of industries makes it impossible to use state-of-the-art estimation techniques for markups that 
work well for one particular industry. Instead, we make use of the standard NBER manufacturing 
productivity database by Bartelsman and Gray containing information on 459 industries between 
1959 and 2009. We exclude 8 discontinued industries leaving us with 451 industries.28 We use 
(average) price cost margins (see Aghion et al. [3]) as a proxy for markups. Thus, pcmt (z), the 
estimate for industry z at time t is calculated as follows:

pcmt (z) = log
(
1 + PCMt (z)

) = log

(
1 + Value addedt (z) − Payrollt (z)

Value of Shipmentt (z)

)
(A.1)

While this proxy is subject to shortcomings, such as not differentiating between marginal and 
average costs, it represents a reasonable proxy for a large scale study such as ours.29

Appendix B. Proofs

Proof of Lemma 1. We focus on time-invariant economies. Using the expression for prices, 
ps(z) = Ms(z)

ws

As(z)
and the definitions of αs(z), Ās and M̄s (see Eqs. (11), (12), and (13)), 

we can solve for nominal prices and the nominal wage rate via normalizing the price index 

Ps = (
∫ 1

0 ps(z)
1−θ dz)

1
1−θ to one. Thus,

ws = Ās

M̄s

, (B.1)

ps(z) = Ms(z)

M̄s

αs(z)
1

1−θ . (B.2)

Plugging the demand function of each sector, cs(z) (see Eq. (4)) into the profit function of each 
sector πs(z) (see Eq. (6)) yields an expression for ys via (5)

28 Our results are virtually equivalent when we include those industries until their year of discontinuation.
29 The proxy is consistent with our theory as the production function is constant returns to scale in labor (see De Loecker 
[15]).
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ys = Āsηs, (B.3)

where we have used the expression for nominal wages and prices (see Eqs. (B.1) and (B.2)) 
and the definition of ηs (see Eq. (14)). Since the price index is normalized to one, Cs = ys . The 
fraction of income derived by labor income, ωs = ws

ys
, is readily obtained via Eqs. (B.1) and 

(B.3). Real profits follow immediately from (4), (6), (B.1), (B.2), and (B.3). �
Proof of Lemma 2. By the definition of Arrow–Debreu prices, period-by-period and state by 
state, we obtain:

V =
∞∑
t=1

δtΛ−1
m ΦtΛmπ = Λ−1

m

( ∞∑
t=1

δtΦt

)
Λmπ

= Λ−1
m

( ∞∑
t=0

δtΦt − I

)
Λmπ = (

Λ−1
m (I − δΦ)−1Λm − I

)
π.

The valuation operator (Λ−1
m (I − δΦ)−1Λm − I ) has strictly positive elements. �

Proof of Proposition 1. The proposition is a special case of the following general lemma.

Lemma 5. Consider a strictly positive vector πm ∈ R
S++, a strictly positive matrix Θ ∈ R

S×S++ , 
and a scalar n ∈R++. Then there is a unique ξ ∈ R

S+ so that for all strictly positive b ∈ R
S++,

ξ = arg max
x

bT x, s.t.,

x ≤ πm,

0 ≤ (Θ − nI)x. (B.4)

For each s, the solution has either the first or the second constraint binding, i.e., for each s, 
ξs = πm

s or nξs = Θξs .

Proof. Let x < y denote that x ≤ y and x �= y. Also, define z = x ∨ y ∈ R
S , where zs =

max(xs, ys) for all s. Clearly, x ≤ x ∨ y, where the inequality is strict if there is an s such 
that ys > xs . Finally, define the set K = {x : 0 ≤ x, x ≤ π∗, nx ≤ Θx}. Note that K is compact.

Now, there is a unique maximal element of K , that is, there is a unique ξ ∈ K , such that for 
all x ∈ K and x �= ξ , ξ > x. This follows by contradiction, because assume that there are two 
distinct maximal elements, y and x, then clearly z = x ∨ y is strictly larger that both x and y. 
Now, it is straightforward to show that z ∈ K . The only condition that is not immediate is that 
Θz ≥ nz. However, this follows from Θ(x ∨ y) ≥ Θx ∨ Θy ≥ nx ∨ ny = n(x ∨ y) = nz.

Now, since b is strictly positive, it is clear that ξ is indeed the unique solution to the opti-
mization problem regardless of b. That one of the constraint is binding for each s also follows 
directly, because assume to the contrary that neither constraint is binding in some state s. Then 
ξs can be increased without violating either constraint in state s and, moreover, the constraints in 
all the other states will actually be relaxed, so such an increase is feasible. Further, since bs > 0, 
it will also increase the objective function, contradicting the assumption that ξ is optimal.

In particular, Lemma 5 can be applied to the industry optimization problem (see (20)) by 
specifying Θ = (Λ−1

m (I −δΦ)−1Λm −I ), Vs = ιTs Θπ (see Lemma 2), b = ΘT ιs and n = N −1. 
Then, the incentive constraint (8) can be written as (Θ − nI)π = V + π − Nπ ≥ 0.
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Finally, we restate the program in Lemma 5 in terms of normalized profits:

πN
s (z) = πs(z)

πm
s (z)

= πs(z)

αs(z)CsM̄
θ−1
s

Mm−1
(Mm)θ

= C
−γ
s

ICs(z)

πs(z)

Mm−1
(Mm)θ

or in vector form:

πN(z) = (Mm)θ

Mm − 1
ΛmΛ−1

IC π(z) (B.5)

Since b in the objective (B.4) is just required to be strictly positive, we choose b = 1 for 
simplicity. By construction, normalized profits are bounded above by 1:

πN(z) ≤ 1.

This yields constraint (25). To obtain constraint (26), we need to rewrite the incentive constraint 
V + π − Nπ ≥ 0. Using the valuation formula (18) and (B.5) we obtain

V + π − Nπ = Mm − 1

(Mm)θ
Λ−1

m

(
(I − δΦ)−1 − NI

)
ΛICπN(z).

Without loss of generality we can premultiply the incentive constraint V + π − Nπ ≥ 0 with 
Λm

(Mm)θ

Mm−1 so that we obtain the constraint (26). �
Proof of Proposition 2. In this proof, the variable x is proportional to normalized profits πN . 

Let K∗(N) def= {x : 0 ≤ x, NΛICx ≤ (I − δΦ)−1ΛICx}. Now, NΛICx ≤ (I − δΦ)−1ΛICx is 
equivalent to Ny ≤ (I − δΦ)−1y, where y = ΛICx ∈ R

S+. We first show that K∗(n) = {0} when 
N > 1

1−δ
, which immediately implies that the only solution to the optimization problem in Propo-

sition 1 is indeed the competitive outcome. Define the matrix norm ‖A‖ = supx∈RS\{0}
‖Ax‖
‖x‖ , 

where the l1 vector norm ‖y‖ = ∑
s |ys | is used. Since Φ is a stochastic matrix, ‖Φi‖ = 1 for all 

i and using standard norm inequalities it therefore follows immediately that

∥∥(I − δΦ)−1
∥∥ =

∥∥∥∥∥
∞∑
0

δiΦi

∥∥∥∥∥ ≤
∞∑
0

δi
∥∥Φi

∥∥ = 1

1 − δ
,

and thus ‖(I − δΦ)−1y‖ ≤ 1
1−δ

‖y‖. Now, Ny ≤ (I − δΦ)−1y implies that N‖y‖ ≤ ‖(I −
δΦ)−1y‖, and therefore it must be the case that N ≤ 1

1−δ
, for the inequality to be satisfied for 

a non-zero y. Now, consider the case when N = 1
1−δ

. Since y = 1 is an eigenvector to Φ with 
unit eigenvalue, it is also an eigenvector to (I − δΦ)−1 with corresponding eigenvector 1

1−δ
, 

leading to x = Λ−1
IC 1 or xs = IC−1

s . It is easy to show that this is the unique (up to multiplica-
tion) nonzero solution. Given the properties of Φ , the Perron–Frobenius theorem implies that 
this is indeed the only eigenvector with unit eigenvalue, and therefore also the only eigenvector 
to (I − δΦ)−1 with eigenvalue 1

1−δ
. Now, take an arbitrary y ∈ R

S+\{0} as a candidate vector to 
satisfy the inequality, i.e., such that z = (I − δΦ)−1y satisfies zi ≥ Nyi = 1

1−δ
yi for all i. Then, 

since ‖(I − δΦ)−1‖ = 1
1−δ

, it follows that 
∑

i zi ≤ 1
1−δ

∑
i yi . The two inequalities can only be 

satisfied jointly if zi = 1
1−δ

yi for all i, and thus y is the already identified eigenvector. Thus, 

K∗( 1 ) = {Λ−11σ, σ ≥ 0}. Since πN ∝ x with the additional constraint πN ≤ 1, the maximal 
1−δ IC
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σ that satisfies σ IC−1
s ≤ 1 for all s is given by mins ICs . This leads to normalized profits of 

πN = mins ICs

ICs
. �

Proof of Lemma 3. The second statement Nm(z) < N(z) ≤ Nc follows directly from the dis-
cussion in the text. Second, we prove that ICs must vary across states for markup variation to 
occur. If ICs = k for some constant k, the diagonal matrix ΛIC becomes ΛIC = kI so that we 
obtain for Nm(z) (see (28)):

Nm(z) = min
s

Λ−1
IC (I − δΦ)−1ΛIC1 =min

s
(I − δΦ)−11 = 1

1 − δ
= Nc.

This is because the eigenvalue of (I −δΦ)−1 associated with the eigenvector of 1 is given by 1
1−δ

(see Proof of Proposition 2). So, Nm = Nc . Hence markups can never differ across states. �
Proof of Proposition 3. Continuity follows from the fact that the objective function in Lemma 5
is a continuous function of all parameters and that (as long as N is strictly below Nc) the 
set K (see Proof of Lemma 5) is compact, and depends continuously on all parameters, in 
the sense that if K and K ′ are defined for two sets of parameter values, then D(K, K ′) ap-
proaches zero when the parameter values that define K ′ approach those that define K . Here, 
D(K, K ′) = supx∈K ′ infy∈K |x − y|.

(1) follows from the definition of K in the proof of Lemma 5. It immediately follows that the 
set K is decreasing in N , which in turn immediately implies (1).

To prove the comparative statics in ICs , i.e., claim (2), rewrite the incentive constraint in the 
program of Proposition 1, i.e.,[(I − δΦ)−1 −N(z)I ]ΛIC(z)π̂

N ≥ 0 as ΩΛICπ̂N . Let Ωi,j denote 
the i, j element of Ω = (I − δΦ)−1 − N(z)I . Note that only the diagonal elements Ωs,s may be 
negative. The s element of the vector ΩΛICπ̂N is simply:

vs = Ωs,sICsπ
N
s +

∑
j �=s

Ωj,sICjπ
N
j ≥ 0 (B.6)

We first note that if the incentive constraint binds in some state s, i.e., vs = 0, then this implies 
that Ωs,s < 0 since Ωj,s > 0 for all j �= s (see Proof of Lemma 2). We now consider the com-
parative statics as we change the k-element of IC by �k . We denote the outcome of the (new) 
optimization problem vs(�k), πN(�k).

Case 1: Suppose first that the incentive constraint does not bind in state k when �k = 0, i.e., 
πN

k (0) = 1. Moreover, let �k be sufficiently small, such that the constraint in state k is still slack 
after the increase in �k , i.e., πN(�k) = 1.30 Then, the incentive constraint (B.6) in all states 
s �= k is relaxed by Ωk,s�k1 = Ωk,s�k (recall Ωk,s > 0 and πN

k (0) = 1). Therefore, for any 
state with a previously binding incentive constraint, i.e., vs(0) = 0, there is now a strict increase 
in the markup, i.e., πN

s (�k) > πN
s (0) whereas πN

k remains (by construction) unaffected.

Case 2: Suppose now, that the incentive constraint binds in some state k, i.e., vk = 0 and 
hence πN(0) < 1. Since the incentive constraint binds in state k, this implies that Ωk,k < 0 (for 
otherwise (B.6) cannot bind). Rearranging (B.6) implies:

πN
k ICk =

∑
j �=s Ωj,kICjπ

N
j

|Ωk,k| (B.7)

30 Thus, if Θkk < 0, we require that �kΘkk + ε ≥ 0.
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Note, with �k = 0 it is impossible to find any incentive compatible way to increase the prod-
uct πN

k (0)ICk(0). This follows by definition of πN
k (0) being the maximum (and ICk being 

a constant). Now, if we increase ICk by �k , then it also must be impossible to increase 
πN

k (�k)ICk(�k). Suppose it was possible to increase πN
k ICk , then it would also be possible 

to find a πN > πN(0) in an incentive compatible way when �k = 0. Contradiction. Thus, at best 
πN

k ICk stays constant. If πN
k ICk is held constant, markups in all other states are unaffected, i.e., 

πN
j (�k) = πN

j (0). This can be trivially achieved by setting πN
k (�k) to

πN
k (�k) = πN

k (0)
ICk(0)

ICk(�k)
(B.8)

Thus markups in state k are strictly decreasing in ICk if the incentive constraint bind in state k. 
(all other markups are unaffected). By combining cases 1 and 2, we get the comparative statics 
in ICs and IC′

s . �
Proof of Proposition 4. Before showing existence, we discuss some invariance results which 
will be helpful in the proof. We first note that the following result follows immediately from 
Proposition 2:

Lemma 6. In any general equilibrium, any two industries with the same N and α have the same 
markups, M , and profits, π .

Also, we observe that it is only the distributional properties of N and α that are important 
for the aggregate characteristics of an equilibrium. This should come as no surprise given that 
the aggregate variables important for industry equilibrium only depend on the distributions. To 
be specific, we define the (cumulative) distribution function F : N × [c0, c1]S → [0, 1], where 
F(n, s1, . . . , sS) = λ({z : N(z) ≤ n ∧ α1(z) ≤ s1 ∧ · · · ∧ αS(z) ≤ sS}), and λ denotes Lebesgue 
measure. Thus, F(n, α1, . . . , αS) denotes the fraction of industries with number of firms less 
than or equal to n, and productivities αs(z) ≤ αs for all s. We say that two economies, E1 and 
E2, are equivalent in distribution if they have the same distribution functions, and agree on the 
other parameters: g, Ā, Φ , γ , θ and δ̂. Also, two outcomes—in two different economies—are 
said to be equivalent if any two industries, z and z′ in the first and second economy, respectively, 
for which N1(z) = N2(z′) and α1

s (z) = α2
s (z

′) for all s, have the same industry markups in each 
state of the world, M1

s (z) = M2
s (z′) for all s.

Lemma 7. Given two economies that are equivalent in distribution. Then for each equilibrium 
in one of the economies there is an equivalent equilibrium in the other.

We now prove the proposition with a fixed point argument, and therefore define a fixed point 
relationship for the markup function, M , which ensures that it defines an equilibrium. We define 

R
def= N̄ × [c0, c1]S , where N̄ = {1, 2, .., �Nc� + 1}, with elements x = (n, α1, . . . , αS) ∈ R. We 

will then work with functions M0 : R → [0, 1]S , and given such a function, the transformation to 
the standard markup function is given by Ms(z) = M0

s (min(N(z), �Nc� + 1), α1(z), . . . , αS(z)). 
The reason why we work with the canonical domain, R, rather than S×[0, 1], is that compactness 
properties needed for a fixed point argument are easier obtained in this domain. Given a function, 
M0 : R → [1, θ ]S , we define
θ−1
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p0
s = G−θ (Ms) =

(∫
αs(z)Ms(z)

−θ dz

) 1
−θ =

( ∫
x∈R

xs+1M
0(x)−θ dF (x)

) 1
−θ

, (B.9)

p1
s = G1−θ (Ms) =

(∫
αs(z)Ms(z)

1−θ dz

) 1
1−θ

,

=
( ∫
x∈R

xs+1M
0(x)1−θ dF (x)

) 1
1−θ

. (B.10)

It follows immediately that the mapping from M0 to p0 and p1 is continuous (in L1 topology) 
and since 

∫
α(z)dz = 1, that p0

s and p1
s lie in [1, θ/(θ − 1)]. From (15), it follows that

Cs = Ās

(
p0

s

p1
s

)θ

, (B.11)

and from (19) for M(z) = θ
θ−1 that

πm
s = 1

p1−θ
1

(θ − 1)θ−1

θθ
αsCs = 1

p1−θ
1

(θ − 1)θ−1

θθ
xs+1Cs. (B.12)

Now, for each z, given πm ∈ R
S+, the program in Proposition 1 provides a continuous mapping 

from πm to

πs ∈
S∏
1

[
0,πm

s

]
. (B.13)

We use (19) to define the operator F , which operates on functions, and which is given by:

M1
s (x) = (

F
(
M0)(x)

)
s
= 1 + p1(s)

1−θ

Csxs+1

(
M0

s (x)
)θ

πs.

Since each operation in (B.9)–(B.13) is continuous, it follows that F is a continuous operator 
(in L1(R1+S)-norm). Further, it also follows that if M0

s (x) ∈ [1, θ
θ−1 ], then since 0 ≤ π ≤ πm, 

1 ≤ M1
s (x) ≤ 1 + (θ−1)θ−1

θθ (M0
s )θ ≤ θ

θ−1 . Define, Z as the set of all functions, M : R →
[1, θ/(θ − 1)]S , such that M is nonincreasing in its first argument and nondecreasing in all other 
arguments. Then, from what we have just shown, together with Proposition 3, it follows that F
is a continuous operator that maps Z into itself. We also have

Lemma 8. Z is convex and compact.

We prove that the set, W , of nondecreasing functions f : [0, 1] → [0, 1], is convex and 
compact. The generalization to functions with arbitrary rectangular domains and ranges, f :∏N

1 [ai, bi] → ∏M
1 [ci, di], is straightforward, as is the generalization to functions that are nonin-

creasing in some coordinates and nondecreasing on others (as is Z). Convexity is immediate. For 
compactness, we show that every sequence of functions f n ∈ W , n = 1, 2, . . . , has a subsequence 
that converges to an element in W . First, note that W is closed, since a converging (Cauchy) se-
quence of nondecreasing functions necessarily converges to a nondecreasing function. To show 
compactness, define the corresponding sequence of vectors gn ∈ [0, 1]2j

, for some j ≥ 1, by 
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gn
k = fn(2−j k), k = 0, 1, . . . ,2j − 1. Now, since [0, 1]2j

is compact it follows that there is a 

subsequence of {f n}, {f nm} that converges at each point 2−j k, to some g∗ ∈ [0, 1]2j
. Define the 

function hj : [0, 1] → [0, 1] by hj (x) = g∗
k , for 2−j k ≤ x < 2−j (k + 1), which is obviously also 

in W . Next, take the sequence {f nm}, and use the same argument to find a subsequence that con-
verges in each point 2−(j+1)k, k = 0, . . . , 2j+1 − 1, and the corresponding function hj+1(x). By 
repeating this step, we obtain a sequence of functions in W , hj, hj+1, . . . , such that for m > j ,

1∫
0

∣∣hm(x) − hj (x)
∣∣dx ≤

∑
k

(
g

j

k+1 − g
j
k

)
2−j ≤ 2−j .

Thus, hj , hj+1, . . . forms a Cauchy-sequence, which consequently converges to some function 
h∗ ∈ W . Take a subsequence of the original sequence of functions, {f nj }, such that 

∫ |f nj −
hj |dx ≤ 2−j . Then, for m > j , since

1∫
0

∣∣f nm(x) − f nj (x)
∣∣dx =

1∫
0

∣∣f nm(x) + hm(x) − hm(x) + hj (x) − hj (x) − f nj (x)
∣∣dx

≤
1∫

0

∣∣f nm(x) − hm(x)
∣∣dx +

1∫
0

∣∣f nj (x) − hj (x)
∣∣dx

+
1∫

0

∣∣hm(x) − hj (x)
∣∣dx

≤ 3 × 2−j ,

{f nj } is also a Cauchy sequence and converges to h∗ ∈ W . Thus, W is compact and the lemma 
is proved. Given Lemma 8 and the continuity of F , a direct application of Schauder’s fixed point 
theorem implies that there is a M∗ ∈ Z, such that F(M∗) = M∗. Now, given such an M∗, and its 
associated πm defined by (B.12), and given the functions, N(z) and αs(z), 0 ≤ z ≤ 1, Lemma 5
can be used to construct Ms(z). Since M and M∗ have the same distributional properties, and C, 
p0 and p1, only depend on distributional properties, it immediately follows that M constitutes 
an equilibrium. We are done. �
Proof of Proposition 5. First note that an equivalent formulation of Lemma 5 is the following: 
Define the sets Ξs = {x ∈ R

S+ : xs ≤ πm
s }, Qs = {x ∈ R

S+ : 0 ≤ ((Θ − nI)x)s}, where Θ =
(Λ−1

m (I − δΦ)−1Λm − I ) and n = N − 1, and R = (
⋂S

s=1 Ξs) ∩ (
⋂S

s=1 Qs). Then there is a 
unique element, r ∈ R, such that for all s, rs = maxq∈R qs . That is, there is a unique element that 
jointly maximizes all coordinates of elements in R. Moreover, for each s, such that rs < πm

s it 
must be that rs = 1

n
(Θx)s .

For coordinates such that rs < πm
s , if any number of the πm

s is replaced by π̂m
s > πm

s , i.e., if 
Ξs is replaced by Ξ̂s = {x ∈R

S+ : xs ≤ π̂m
s }, where π̂m

s ≥ πm
s , and the equality is only allowed to 

be strict for coordinates where rs < πm
s , and R̂ is defined as R = (

⋂S
i=1 Ξ̂s) ∩ (

⋂S
i=1 Qs), then 

R̂ = R, and consequently, r̂ = r where r̂ is the unique maximal element in R̂. To see this, assume 
that an element v ∈ R̂ existed such that vs > πm

s for at least one s. Then since R̂ is convex there 
must also be an element, w = λr + (1 − λ)v ∈ R̂, with ws ≤ πm

s , for all s and ws = πm
s for one 
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coordinate such that rs < πm
s . But then w ∈ R, and it must then be that rs = πm

s , leading to a 
contradiction. Thus, no such element exists, so R̂ = R.

Now, from our discussion in Section 3.3, it follows that in an equilibrium in a homogeneous 
economy, all firms must charge the same markups in any state, Ms(z) = M̄s for all z, and that 
any equilibrium must be efficient so that Cs = Ās = As(z) and αs(z) = 1 for all s for all z. What 
is not a priori clear is whether there may be multiple average markup vectors, M̄, that constitute 
an equilibrium. We now show that this is not the case.

Given an equilibrium in a homogeneous economy, it follows from Eq. (19), and that Cs = As , 
that

1

M̄s

= 1 − πs

As

= (1 − us). (B.14)

Here us = πs

As
∈ [0, 1

θ
] represents firm profits in state s as a fraction of total output.

It further follows from πm
s ≡ Mm−1

(Mm)θ
Csαs(z)M̄

θ−1
s that given such an average markup across 

industries, the monopolistic profits as a fraction of total output in one (zero-measure) industry, z, 
that deviates from the average markup function is ûs = π̂m

s

As
= Mm−1

(Mm)θ
M̄θ−1

s = Mm−1
(Mm)θ

(1 − us)
1−θ . 

We note that ûs ≥ u for all u ∈ [0, 1
θ
], and that the inequality is strict except for at û = u = 1

θ
.

Given the homogeneous behavior of all other industries, the firm optimization problem in 
(24)–(26) can be written

û = arg max
û

ιTj Λ−1
A ΘΛAû, s.t., (B.15)

ûs ≤ Mm − 1

(Mm)θ
(1 − us)

1−θ , s = 1, . . . , S, (B.16)

0 ≤ (
Λ−1

A ΘΛA − (N − 1)I
)
û, (B.17)

where ΛA = diag(Ā1, . . . , Ās). A necessary and sufficient condition for u to be an equilibrium 
is now that û = u in the above optimization problem.

Assume that we have found such a u (we know that there exists at least one such u from the 
existence theorem). If we can show that u is also the solution to the same program, but where 
(B.16) is replaced by ûs ≤ 1

θ
for all s, then we are done, since there is a unique solution for that 

optimization problem (as follows from an identical argument as the proof of Lemma 5).
An identical argument as in Lemma 5 implies that for each s, either (B.16) or (B.17) binds 

(or both). For any s such that (B.16) binds, it must further be that equilibrium markups in that 
state are monopolistic, i.e., u = 1

θ
. Thus, relaxing the constraints for those s to ûs ≤ 1

θ
does not 

change the solution to the problem.
For any other s, where (B.16) does not bind and (B.17) binds, we note that since us < 1

θ
, us <

Mm−1
(Mm)θ

(1 − us)
1−θ , ûs is strictly lower than its bound imposed by (B.16) for such s. However, 

from the argument at the beginning of this lemma, it follows that relaxing the constraint for these 
coordinates does not change the solution, so we can relax the constraints to ûs ≤ 1

θ
for such s

too. Thus, u is also a solution to the relaxed problem, and is therefore unique. We are done. �
Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2014.09.001.

http://dx.doi.org/10.1016/j.jet.2014.09.001
http://dx.doi.org/10.1016/j.jet.2014.09.001
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