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This article characterizes optimal compensation contracts in principal-agent settings in which the
consequences of the agent’s action are only observed over time. The optimal timing of pay trades off the
costs of deferred compensation arising from the agent’s relative impatience and potential consumption
smoothing needs against the benefit of exploiting additional informative signals. By capturing this
information benefit of deferral in terms of the likelihood ratio dynamics, our characterization covers
general signal processes in a unified setting. With bilateral risk neutrality and agent limited liability, optimal
contracts are high-powered and stipulate at most two payout dates. If the agent is additionally risk-averse,
payouts are contingent on performance exceeding a hurdle that is increasing over time. We obtain clear-cut
predictions on how the duration of optimal compensation depends on the nature of information arrival as
well as agent characteristics and derive implications for the maturity structure of securities in financial
contracting settings.
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1. INTRODUCTION

In many real-life principal–agent relationships, informative signals about the agent’s action are
not all immediately available, but only arrive over time. For example, within the financial sector,
investments by private equity or venture capital fund managers only produce verifiable returns
to investors upon an exit, a credit rating issued by a credit rating agency or a loan officer’s
loan decision can be evaluated more accurately over the lifetime of a loan, and a bank’s risk
management is only stress-tested in times of crisis. Outside the financial sector, innovation
activities by researchers, be it in academia or in industry, typically produce signals such as patents
or citations only with considerable delay. Similarly, the quality of a CEO’s strategic decisions has
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persistent, long-lasting effects on outcomes and may not be assessed until well into the future.
The list is certainly not exclusive and, yet, it suggests that the staggered arrival of performance
signals over time is an important—if not defining feature—of many moral hazard environments.
This article studies the basic question of how to optimally structure the intertemporal provision
of incentives in such “only time will tell” information environments when the agent’s relative
impatience and consumption smoothing needs make it costly to defer compensation. We allow
for general information systems and, yet, obtain a simple and intuitive characterization of optimal
contracts, in particular of the optimal duration of pay. With bilateral risk neutrality and agent
limited liability, optimal contracts are high-powered in that they only reward those outcomes
that are most indicative of the agent having taken the desired action, and stipulate at most two
payout dates. Our precise and tractable characterization allows for clear-cut predictions on the
comparative statics of the optimal timing of pay. Consistent with empirical evidence on the
determinants of (executive) pay duration across firms and industries (see e.g. Gopalan et al.,
2014) we find, for instance, that the optimal duration of pay is higher for firms with higher
growth opportunities and more severe agency problems, but decreasing in the agent’s outside
option. Once we incorporate agent risk aversion, we obtain additional predictions, as contracts
optimally smooth out payouts over a larger selection of dates and contingencies. The interaction
of relative impatience and risk-aversion then implies an increasing performance hurdle over time
and a decreasing pay-performance sensitivity (under decreasing absolute risk aversion).

To focus on the optimal intertemporal provision of incentives for general signal processes, we
consider an otherwise parsimonious principal-agent setting with a one-time action in the spirit of
Holmstrom (1979). The agent chooses an unobservable binary action that affects the distribution of
a process of contractible signals, such as output realizations, defaults, annual performance reviews,
etc. A compensation contract stipulates payments to the agent, conditioning on all information
available at a particular date—the history of signals—and must satisfy both the agent’s incentive
(IC) and participation constraint (PC). We show that it is without loss of generality to specify
compensation contingent on the likelihood ratio process, as induced by the underlying signal
process. Our characterization of optimal contracts then only relies on the martingale property
of this performance metric, which allows us to accommodate good news, bad news, discrete,
and continuous signal processes within a unified framework. Note, while it may be natural that
additional signals, such as, e.g., stock prices, become noisier over time, the information contained
in the history of signals, e.g., the entire path of stock prices, must (weakly) improve due to the
inclusive information structure.

We initially assume bilateral risk neutrality with agent limited liability, as is standard in
workhorse models of financial contracting such as Innes (1990), DeMarzo and Fishman (2007),
or DeMarzo and Sannikov (2006). This allows us to obtain clear-cut timing implications before
analysing the additional effects of intertemporal consumption smoothing motives. The key
simplification of the compensation design problem in this setting results from the fact that, in
order to quantify the information benefit of deferral, we only need to keep track of the upper
support of the likelihood ratio distribution, which is a deterministic, increasing function of time.
The intuition for this result draws on insights from static models (e.g. Innes, 1990) and adapts
them to our dynamic environment: if an optimal contract stipulates a bonus at some date t, then this
bonus is only paid for an outcome, here a history of realized signals up to date t, that maximizes
the likelihood ratio across all possible date-t realizations.1 Then, by tracing out this maximal
date-t likelihood ratio over time, we obtain a uni-dimensional metric that quantifies by how much

1. Without a risk-sharing motive, it is optimal to “punish” the agent for all other outcomes, i.e., pay out zero due
to limited liability.
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the principal is able to reduce incentive pay by deferring longer.2 Since the maximal likelihood
ratio, thus, captures the value of the sequence of informative signals up to date-t to the principal,
we refer to it, in a slight abuse of terminology, as the informativeness of the date-t information
system under bilateral risk neutrality.

The timing of payouts trades off the information benefit of deferral—quantified by the increase
in informativeness—with the deadweight costs resulting from the agent’s relative impatience.
When the agent’s outside option is low, higher informativeness allows the principal to reduce the
agency rent, and all pay is optimally concentrated at a single date that maximizes the impatience-
discounted likelihood ratio. In turn, when the outside option is high enough so that the agent’s
participation constraint binds, the principal’s rent-extraction motive is absent. Then, optimal
contracts minimize deadweight impatience costs subject to incentive compatibility. Using simple
convexification arguments, we show that optimal contracts may now require (at most) two payout
dates — regardless of the underlying signal process. To build intuition for this key result, initially
assume that signals arrive gradually over time with decreasing incremental informativeness
(i.e. the maximal likelihood ratio is a strictly concave function of time). Then, as incremental
(impatience) costs are increasing faster than the incremental (informativeness) benefit, it is optimal
to pay at the first date at which informativeness is high enough to jointly satisfy both the incentive
and participation constraint. Now, consider a perturbation of this information environment and
assume that “a lot of” information, in the sense of a jump in informativeness, arrives immediately
after the previously optimal payout date, e.g., due to an additional performance review. Then, it
is optimal to shift part of the incentive pay to a later date to tap the new informative signals of the
review, which allows to simultaneously shift the remaining pay necessary to satisfy (PC) to an
earlier date, thereby reducing impatience costs. Formally, the principal now benefits from using
two payout dates as the cost of having access to time-t informativeness is no longer globally
convex.3

While our simple model is not designed to match particular institutional details, its comparative
statics implications are consistent with various stylized facts. For instance, it predicts that the
duration of pay, the weighted average payout time, is shorter if the agent’s outside option is
higher. Thus, in industries with a high degree of competition for the agent’s talent or services we
would expect, ceteris paribus, shorter deferral periods. In contrast, the duration is predicted to be
longer if the agency problem, as measured by the agent’s benefits from shirking, is more severe.
To the extent that one interprets better corporate governance as a way to reduce such shirking
benefits (e.g. via improved monitoring as in Holmstrom and Tirole (1997)), we, thus, obtain the
implication that corporate governance and optimal pay duration are substitutes. This is consistent
with empirical evidence documenting that pay duration for executives is higher in companies
with a higher entrenchment index (see Gopalan et al., 2014). Further, our results shed light on
how variation in the nature of information arrival across industries and tasks can help to explain
observed patterns in the duration of executive pay. Gopalan et al. (2014) find that executive pay
duration is longer in firms with more growth opportunities and a higher R&D intensity (see also
Baranchuk et al., 2014). This is consistent with our model as firms in such industries typically
receive relatively little information in early stages and exhibit high informativeness growth in
later development stages.

2. Due to the martingale property of the likelihood ratio process this metric is increasing in time.
3. As convexification of this cost requires at most two payout dates, the principal does not benefit from paying at

additional dates. One may now conjecture that it is always optimal to shift the pay that primarily targets the participation
constraint to date 0, but this conjecture is wrong. For example, suppose that “a lot” of valuable information is released at
date ε, immediately after date 0. Then it is optimal to make all pay contingent on this almost costless information, which
allows to reduce the size of more expensive long-term bonus payments.
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We then augment our modelling framework, adding financial contracting frictions in the form
of upper bounds on payouts to the agent. We show how persistent effects in moral hazard settings
generate novel predictions for optimal security design (building on Innes (1990) and Hébert
(2018)), in particular the optimal maturity structure of an entrepreneur’s financing decisions.
The entrepreneur optimally receives positive payouts if and only if performance (measured in
likelihood ratio units) is above a cut-off that is increasing in time. This increasing performance
hurdle implies a rich dynamic payoff structure for the entrepreneur’s and investors’ claims,
resulting from the trade-off between the entrepreneur’s liquidity needs and the information gain
associated with additional performance signals available to investors.

Once we allow for risk aversion, the benefits of deferral, in terms of a more precise performance
measurement, are unaffected. However, due to the agent’s desire to smooth consumption across
time and states, it is no longer optimal to concentrate pay at a single (or two) payout dates
following the realization of the signal history with the maximal likelihood ratio. Intuitively,
starting from the “risk-neutral” payout time and contingency, it is now optimal to gradually
spread out consumption across time and states. As is standard, for a given t, the optimal contract
stipulates higher rewards for higher performance. However, due to the costs associated with
relative impatience, the likelihood ratio needed to maintain the same level of pay at future
dates is increasing with time. Next to this increasing performance hurdle, we find that the pay-
performance sensitivity is decreasing over time if the agent’s preferences exhibit decreasing
absolute risk aversion, while it is increasing with time for the case of increasing absolute
risk-aversion.

Literature. The premise of our article is that the timing of pay determines the information
about the agent’s hidden action that the principal can use for incentive compensation. This relates
our analysis to the broader literature on comparing information systems in agency problems,
which derives sufficient conditions for information to have value for the principal (Holmstrom,
1979; Gjesdal, 1982; Grossman and Hart, 1983; Kim, 1995). Time generates a family of inclusive
information systems via the arrival of additional signals, so that these can be ranked both in the
sense of Holmstrom (1979) and Kim (1995). The key difference of our article relative to this
classical strand of the literature is that having access to a better information system generates
endogenous costs due to the agent’s relative impatience and consumption smoothing concerns.
This trade-off determines the information system in equilibrium, which relates our paper to the
literature on information design (see Kamenica and Gentzkow, 2011; Bergemann and Morris,
2016), and, in particular, its applications to moral hazard settings, Georgiadis and Szentes (2020)
and Li and Yang (2020).

More concretely, our paper belongs to a small, but growing literature that analyses moral hazard
setups in which the agent’s action has persistent effects. Hopenhayn and Jarque (2010) analyse
optimal contracts in a discrete-time setting with a risk-averse and equally patient agent. While
they obtain some characterization for an example with i.i.d. binary signals, their model does not
generate concrete implications for the timing of pay, which is the focus of our article. In particular,
we obtain a precise characterization of the optimal timing of pay for general signal processes.
Our analysis, thus, nests the important finance application of moral hazard by a securitizer of
defaultable assets, as studied in Hartman-Glaser et al. (2012) and Malamud et al. (2013).

In our setup, deferral improves the information available to the principal about the
agent’s initial action. In standard repeated-action settings with instantaneously observable
performance signals backloading of rewards instead has the benefit of relaxing (future) incentive
and limited liability constraints (see e.g. DeMarzo and Sannikov, 2006; Biais et al., 2007;
DeMarzo and Fishman, 2007; Sannikov, 2008). Work by Jarque (2010), Edmans et al. (2012),
Sannikov (2014), or Zhu (2018) combines the effects of repeated private actions and persistence.
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The additional complexity, however, requires special assumptions on the signal process. Instead,
our setup tries to isolate one effect, the idea that information gets better over time, and studies it
in full generality.

2. MODEL SETUP

We consider a principal-agent problem in which the principal observes informative signals about
the agent’s action over time. Time is continuous t ∈[

0,T̄
]
.4 At time 0, the agent A takes an

unobservable action a∈A ={aL,aH}. We denote by aH the high-cost action which comes at
cost kH , and by aL the low-cost action with respective cost kL =kH −�k ≥0, where �k >0 (see
Supplementary Appendix and the application in Hoffmann et al. (2020) for a continuous action
set). As is standard, we suppose that the principal P wants to implement the high action.

Signals and information. The one-time action a affects the distribution of a stochastic process
of verifiable signals Xt that may arrive continuously or at discrete points in time.5 These abstract
signals may correspond to output realizations, annual performance reviews by the principal, or,
more generally, any multidimensional combination of informative signals. Formally, we consider
a family of filtered probability spaces (�,FX ,(FX

t )0≤t≤T̄ ,Pa) indexed by the agent’s action a

and satisfying the usual conditions (see e.g. Jacod and Shiryaev (2003)). Here, FX
t refers to the

filtration generated by Xt and P
a denotes the probability measure induced by action a, where

we assume P
L to be absolutely continuous with respect to P

H , which is denoted by P
L �P

H .
The following three illustrative examples represent information environments covered by our
framework.6

Example 1 At each t ∈{
1,2,...,T̄

}
there is a binary signal xt ∈{s,f } that is drawn independently

over time. The date-t probability of success “s” equals 1
2 under aL and 1−ρt under aH where

ρ ∈
(

1
2 ,1

)
.

Example 2 Xt is a multivariate counting process where x(j)
t =1 indicates that failure on element

j has occurred before time t (x(j)
t =0 otherwise). The action a∈A affects the joint distribution

G(x|t,a).

Example 3 The agent’s action determines the drift of an arithmetic Brownian motion,

dxt =aρtdt+σdZt,

where σ >0, ρ ∈(0,1] and dZt is a standard Wiener process.

The examples illustrate various manifestations of persistence, both in technical (discrete versus
continuous signal processes), as well as in economic terms (learning from “good news” versus
“bad news”). The discrete Example 1 captures the idea that short-run successes may be indicative

4. The assumption of a finite horizon T̄ is not crucial. One can think of T̄ as the last date at which informative
signals arrive, or, alternatively, the last possible date the agent can be compensated.

5. Formally, the index set of the stochastic process Xt can be any measurable subset of
[
0,T̄

]
.

6. Example 1 captures in reduced-form central features of Manso (2011) and Zhu (2018). Example 2 is a
generalization of Hartman-Glaser et al. (2012) and Malamud et al. (2013) allowing for arbitrary correlation structures
between failure events. Example 3 is a one-time action version of Sannikov (2014).
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of the agent having chosen the short-term action aL rather than the desired long-run action aH , as,
for t <−ln2/ln(ρ), the probability of success is higher under aL . In Example 2, one may think of
a loan officer granting loans, whose defaults are correlated via macroeconomic conditions. Here,
learning takes place via (the absence of) failures. Finally, Example 3 considers the canonical
setting where the agent’s action determines the drift of an arithmetic Brownian motion, albeit
with decaying impact.

Each signal process Xt induces a corresponding likelihood ratio process Lt which captures
all the information about the agent’s action contained in the entire history of realized signals
ht ={

xj
}

0≤j≤t up to t. It will, thus, be the key date-t performance measure in our subsequent

analysis of optimal compensation design.7 Let P
a
t denote the restriction of the probability measure

P
a to date-t information FX

t , then the likelihood ratio process is defined as:

Lt :=1− dP
L
t

dP
H
t

, (1)

where existence of the Radon–Nikodym derivative dP
L
t

dP
H
t

follows from the Radon–Nikodym

Theorem given P
L �P

H . To ensure statistical identifiability of the actions aL and aH , we assume
that some information arrives by date T̄ , i.e., L̄T̄ >0, where L̄t :=supω∈�Lt(ω)≤1 refers to the
supremum of the date-t likelihood ratio distribution.

For discrete processes, for which each outcome has positive probability mass, the definition in
(1) corresponds to the standard, “text-book” likelihood ratio (see e.g. Tirole, 2006): For instance,
in Example 1, the date-1 likelihood ratio takes on the value of 1− 1/2

1−ρ
upon realization of a

success signal “s” and a value of 1− 1/2
ρ in the event of a failure “f ” with respective probabilities

1−ρ and ρ given action aH . In contrast, for the continuous Brownian-motion Example 3 with
ρ =1, Girsanov’s theorem implies that the likelihood ratio can be described by the relative density

process Lt =1−exp
[
− aH−aL

σ 2

(
xt − aH+aL

2 t
)]

, where aH−aL
σ 2 may be interpreted as the signal-to-

noise ratio and xt ∼N
(
aHt,σ 2t

)
given aH .

Contracts and preferences. In order to implement the high action, the principal designs a
compensation contract C that stipulates transfers to the agent as a function of the information
available at the time of payout. Formally, a contract can then be represented by a cumulative
compensation process bt that is càdlàg and adapted to FX

t . We restrict attention to payout processes
that satisfy agent limited liability, i.e., dbt ≥0 and assume that the principal is able to commit to
any such contract.8 As is common in dynamic principal-agent models, the principal’s and agent’s
valuation of these transfers differ in two ways: first, we stipulate that the agent is relatively
impatient, which makes it costly to defer pay.9 That is, the discount rates of the agent, rA, and the
principal, rP, satisfy

�r :=rA −rP >0.

Second, while the principal is risk-neutral, we consider both the case of a risk-neutral as well
as the one of a risk-averse agent. With bilateral risk neutrality (see Section 3), the instantaneous

7. The importance of likelihood ratios for optimal compensation design is well established in the literature at least
since Holmstrom (1979).

8. Since in our model the preferences of the principal and the agent differ with regards to the valuation of payouts
across time and states, there else would be scope for ex post renegotiation of the ex ante optimal contract (see e.g.
Fudenberg and Tirole (1990) or Hermalin and Katz (1991)).

9. See, e.g., DeMarzo and Duffie (1999); DeMarzo and Sannikov (2006), or Opp and Zhu (2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/88/3/1253/5879998 by guest on 23 M

ay 2021



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[10:04 6/5/2021 OP-REST200050.tex] RESTUD: The Review of Economic Studies Page: 1259 1253–1278

HOFFMANN ET AL. ONLY TIME WILL TELL 1259

utility transfer to the agent, denoted by dvt , satisfies dvt :=dbt . When the agent is risk-averse
with a strictly increasing and strictly concave utility function u defined over consumption flows
(see Section 4), the contract specifies the consumption flow to the agent, i.e., dbt =ctdt so that
dvt :=u(ct)dt with ct finite.

Hence, the principal’s compensation design problem reads as follows:

Problem 1

W :=min
bt

E
H

[∫ T̄

0
e−rPtdbt

]
s.t. (W)

E
H

[∫ T̄

0
e−rAtdvt

]
−kH ≥R, (PC)

E
H

[∫ T̄

0
e−rAtdvt

]
−E

L

[∫ T̄

0
e−rAtdvt

]
≥�k, (IC)

dbt ≥0 ∀t, (LL)

where E
a denotes the expectation under probability measure P

a.

The principal chooses a compensation contract satisfying agent limited liability (LL) to
minimize the present value of wage cost W (discounted at the principal’s rate). The first constraint
is the agent’s time-0 participation constraint (PC): the present value of utility transfers discounted
at the agent’s rate net of the cost of the action must at least match her reservation utility R.10

Second, incentive compatibility (IC) requires that it is optimal for the agent to choose action aH
given C . A standard change of measure together with the law of iterated expectations (using (1))
then allows us to rewrite (IC) succinctly as:

E
H

[∫ T̄

0
e−rAtLtdvt

]
≥�k. (IC*)

Since the only reason for making contingent payments is to provide incentives and preferences
are time-separable, (IC*) highlights that it is without loss of generality to restrict attention
to compensation processes that are adapted to the filtration generated by the likelihood ratio
process.11

We note that similar to standard static principal-agent settings, such as the special case of our
model with T̄ =0, general existence of a solution to Problem 1 requires additional assumptions.
In the subsequent analysis, we provide sufficient conditions on either the information process
(Condition 1), bounds on transfers (Condition 2) or the utility function (Condition 3) that guarantee
existence of a solution to Problem 1 with a risk-neutral or risk-averse agent, respectively.

10. Since the agent in our model chooses an action once at time 0 and is protected by limited liability, the participation
constraint of the agent only needs to be satisfied at t =0.

11. See the proof of Lemma A.1 in the Appendix for details including the steps in deriving (IC*).
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Remark 1 Consider the following adverse selection problem: Agents differ in their ex ante
type θ ∈{θH ,θL}, inducing different probability measures P

θ over signals Xt, and have type-
dependent outside options RH :=R+kH >RL :=R+kL >0. Then, if the principal only wants high-
type agents to participate and R is sufficiently high, the optimal screening contract is characterized
by the solution to Problem 1.12

3. CONTRACTING WITH RISK-NEUTRAL AGENT

3.1. Baseline model

We initially consider a baseline setting with bilateral risk neutrality. In this setting, the principal’s
optimal choice of payout times results from a basic trade-off between access to a better information
system and the deadweight costs resulting from differential discounting. In particular, the costs of
deferring pay are measured by impatience costs, e�rt , corresponding to the ratio of the principal’s
and the agent’s respective valuations of any date-t transfer. In turn, the key step in quantifying the
information benefit of deferral is to note that—with bilateral risk neutrality and limited liability—
the value of the date-t information system to the principal can be conveniently summarized by L̄t ,
the maximal likelihood ratio across all date-t histories. The intuition is straightforward from (IC*):
as date-t rewards contingent on histories with higher likelihood ratios provide stronger incentives
and risk-sharing is irrelevant, L̄t is the statistic of the likelihood ratio process that determines
minimal compensation costs and we accordingly refer to it as date-t “informativeness.” We can,
thus, quantify the benefit of deferral by the increase in “informativeness” over time—thereby
formalizing the notion of “time will tell.”

Observation 1 Informativeness L̄t is a weakly increasing function of time.

Intuitively, observing additional signals over time cannot reduce the precision of performance
measurement. Formally, the result follows from the fact that Lt is a martingale under P

H (with
an unconditional expectation E

H [Lt]=0 for all t), so that its maximum must be an increasing
function of time. It is easiest to illustrate the well-known martingale property by rewriting (1) as

Lt =1−E
H

[
dP

L

dPH

∣∣∣FX
t

]
and applying the law of iterated expectations.

As one would expect, “time will tell” can manifest itself economically in many different
ways, resulting in smooth informativeness functions (as in Example 2 where good news arrives
gradually over time) or step functions (as in settings with lumpy information such as Example 1)
or any combination thereof. In fact, for any weakly increasing function I : [0,T̄ ]→ [0,1] one can
construct a signal process Xt such that the associated informativeness function satisfies L̄t = I(t).13

This suggests that we can think of L̄t and its distribution—rather than the signal process Xt—as
the primitive of the information environment. To ensure existence of an optimal contract in this
setting, we now require

Condition 1 The maximal-likelihood-ratio event for each date t, Lt = L̄t , occurs with strictly
positive probability under action aH, i.e., P

H
(
Lt = L̄t

)
>0.

Condition 1 is an essential ingredient for the subsequent Theorem 1 as it rules out Mirrleesian
existence problems, that, for example, would arise in the Brownian motion setting of Example 3.

12. We thank an anonymous referee for this insight.
13. See the proof of Lemma A.2 in the Appendix for a construction.
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(Example 3 will still be relevant in subsequent sections where we introduce bounds on transfers
and agent risk aversion).

Theorem 1 Suppose, L̄0 ≤ �k
R+kH

and Condition 1 holds. Then, an optimal contract exists and

is high-powered. The agent is paid at time t, dbt >0, if and only if (i) Lt = L̄t and (ii) t belongs
to the set of optimal payout dates which is characterized as follows: Denote by T̂ the (earliest)
date that maximizes the discounted likelihood ratio, i.e.,

T̂ :=min{argmax
t

e−�rt L̄t}. (2)

1. If R≤ R̄=�k/L̄T̂ −kH, (PC) is slack and it is optimal to pay only at date T̂ with dbT̂ =
erAT̂

PH
(
LT̂ =L̄T̂

) �k
L̄T̂

contingent on LT̂ = L̄T̂ .

2. Else, (PC) binds and an optimal contract requires at most two distinct payout dates, that are
bounded above by T̂ .

Regardless of whether the agent’s participation constraint binds or not, the contingency of
pay in optimal contracts is, thus, chosen to provide maximal incentives: Due to the absence
of risk-sharing considerations, the agent is only rewarded for histories that achieve the highest
likelihood ratio given this action, L̄t and obtains zero for all other outcomes due to limited
liability. In contrast, the optimal timing of pay depends crucially on whether the principal has
a rent-extraction motive ((PC) slack) or not. Before describing this optimal timing choice in
more detail, it is useful to discuss the two qualifying conditions in Theorem 1. First, we have
imposed an upper bound on L̄0 solely for expositional reasons to focus on the relevant case when
the agent’s (IC) constraint binds.14 Second, to illustrate why an optimal contract might not exist
when Condition 1 is violated, consider the case with (PC) slack: Then, if P

H
(
Lt = L̄t

)=0, the

optimal bonus dbt = erAT̂

PH
(
LT̂ =L̄T̂

) �k
L̄T̂

would be infinite (see Section 3.2 on how appropriate payment

bounds can restore existence of a solution).

Discussion of timing PC slack. When (PC) is slack the optimal timing of pay reflects the
principal’s rent-extraction motive: the principal can reduce the utility transfer to the agent, by
deferring longer and, hence, using more informative performance signals. However, deferral does
not imply a zero-sum transfer of surplus to the principal, but instead involves deadweight costs
due to relative impatience. The optimal payout time resolves this trade-off by maximizing the
“discounted informativeness,” where the discount rate �r reflects the effective cost of deferral
per unit of time. If the maximum likelihood ratio L̄t is differentiable at T̂ , we obtain the intuitive
characterization

d logL̄t

dt

∣∣∣∣
t=T̂

=�r. (3)

That is, the principal defers until the growth rate of informativeness, d logL̄t
dt , equals the growth

rate of impatience costs, �r, resulting in wage costs of W = e�rT̂

L̄T̂
�k.

14. If L̄0 > �k
R+kH

, (IC) is slack. Then, there are a continuum of optimal contracts all of which pay the agent at t =0
only and generate wage costs of W = R+kH for the principal. For example, one optimal contract is to pay the agent

R+kH
PH(L0=L̄0)

at date 0 whenever L0 = L̄0.
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Of course, this characterization only applies as long as (PC) is satisfied, i.e., �k/L̄T̂ >R+kH .
Notably, this is a necessary and sufficient condition for (PC) to be slack also in the knife-edge
case with multiple global maximizers of e−�rt L̄t . Intuitively, while the principal is indifferent
among all compensation packages that minimize wage costs, the agent strictly prefers the one
with the highest rent, i.e., the one associated with the least informative performance signal and,
hence, earliest payout time (see (2)).

Discussion PC binds. When the outside option R exceeds the threshold R̄ :=�k/L̄T̂ −kH , the
binding participation constraint implies that the principal has to offer a compensation package
of value R+kH to the agent. Since the principal’s rent-extraction motive is, thus, absent, his
objective is now to maximize joint surplus, i.e., to minimize deadweight impatience costs, subject
to ensuring incentive compatibility. To understand the optimal timing of pay in this case in more
detail, it is useful to express the principal’s wage cost in (W) as the product of the compensation

value to be provided to the agent, (R+kH), and weighted average impatience costs
∫ T̄

0 e�rtdwt :

W =(R+kH)min
wt

∫ T̄

0
e�rtdwt . (4)

Here, the new choice variable dwt := E
H[e−rAtdbt]

R+kH
≥0 can be economically interpreted as the

fraction of the total compensation value that the agent derives from date-t payouts, implying that∫ T̄
0 dwt =1. Moreover, (IC*) requires that contractual incentives—the product of the compensation

value to the agent, (R+kH), and the weighted average informativeness
∫ T̄

0 L̄tdwt—satisfy

(R+kH)

∫ T̄

0
L̄tdwt =�k.15 (5)

This change of variables now clearly highlights that the optimal calibration of bonus payout

times achieves a given weighted average informativeness of
∫ T̄

0 L̄tdwt = �k
R+kH

at lowest weighted

average impatience costs,
∫ T̄

0 e�rtdwt .16

Using elementary tools of convex analysis, we can now provide an intuitive graphical proof
that illustrates why any optimal contract solving Problem 1 requires at most two payout dates.
Starting from informativeness L̄t and impatience costs e�rt as functions of time (see left panel
of Figure 1), in a first step, plot for each t the implied impatience costs e�rt (on the vertical
axis) against L̄t (on the horizontal axis), see red dotted line in the right panel. The (grey-shaded)
convex hull of this parametric curve traces out all possible combinations of weighted average

informativeness
∫ T̄

0 L̄tdwt and weighted average impatience costs
∫ T̄

0 e�rtdwt that can be achieved
by distributing incentive payments over time. Since the objective in (4) is to minimize weighted
average impatience costs, only the lower hull is relevant (see solid black line in right panel). This

lower hull traces out a strictly increasing function which we denote by C :[L̄0,L̄T̄

]→
[
1,e�rT̄

]
.17

Economically, this function can be interpreted as the cost of informativeness, the minimum

15. This follows directly from (IC*) and the definition of dwt , exploiting the fact that if a payment is made at t
then only for Lt = L̄t .

16. Note, since we assume that date-0 informativeness is bounded above, L̄0 < �k
R+kH

, it is not feasible for the
principal to avoid deadweight costs altogether (dw0 =1) and satisfy (5) at the same time.

17. This follows from the fact that both L̄t and e�rt are increasing in t, the latter always strictly.
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Figure 1

Graphical proof for optimality of at most 2 payout dates

Notes: The left panel plots informativeness, L̄t , and impatience costs e�rt as functions of time. The right panel plots e�rt against L̄t as a
parametric curve. The grey shaded region represents the convex hull of these points. Finally, the black solid line refers to the lower hull, C.

impatience cost required to achieve a given level of weighted average informativeness. As
incentive compatibility in (5) requires a weighted average informativeness of �k

R+kH
, minimum

wage costs in (4) are, thus, given by W =(R+kH)C
(

�k
R+kH

)
.

The reason for why two payout dates are sufficient is then immediate: any point on the lower
hull C either corresponds to

(
L̄t,e�rt

)
for some t (such as the point marked by the square in

the right panel of Figure 1), or can be expressed as a convex combination of two such points
corresponding to distinct dates t (such as the point marked by the black circle).18 In the plotted
example the number of payout dates, thus, depends on the value of �k

R+kH
as, e.g., governed by

the outside option R. The following lemma summarizes these insights.

Lemma 1 If R> R̄, the principal faces wage costs of W =(R+kH)C
(

�k
R+kH

)
. The associated

optimal contract can be characterized as follows:
(1) Single-date: The optimal contract can be implemented with a single payout date T1 if and

only if there exists a date T1 such that L̄T1 = �k
R+kH

and C
(

�k
R+kH

)
=e�rT1 . The contract specifies

dbT1 =(R+kH) erAT1

PH
(
LT1=L̄T1

) if LT1 = L̄T1 and zero otherwise.

(2) Two-dates: Otherwise, the contract requires a short-term payout date TS and a long-term date

TL such that TL >TS ≥0. Let wS := L̄TL − �k
R+kH

L̄TL −L̄TS
∈(0,1) denote the value-weight of the payment at

TS, then the respective payout dates, TS and TL, solve wSe�rTS +(1−wS)e�rTL =C
(

�k
R+kH

)
. The

long-term date TL is characterized by:

TL =argmax
t>TS

L̄t −L̄TS

e�rt −e�rTS
. (6)

18. Formally, any point on the lower hull C is either an extreme point itself or can be expressed as a convex
combination of two extreme points (cf., Krein and Milman, 1940).
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The contractual payments dbTS and dbTL following realization of LTS = L̄TS and LTL = L̄TL are
then obtained from (5).19

The optimal timing of pay in the single-date contract corresponds to the earliest payout date
that allows to provide sufficient incentives with binding (PC), reflecting the principal’s objective
to minimize deadweight impatience costs subject to (IC). Under the two-date contract, this trade-
off is reflected in the principal’s choice of the pair (TS,TL) linked by the following intuitive
property: The long-term date TL globally maximizes the ratio of the incremental informativeness
over the incremental impatience costs relative to date TS as reflected in (6).

Given that we have now formally established why an optimal contract requires at most two
payout dates, we now shed further light on how the number of payout dates depends on the
economic properties of information arrival.

Corollary 1 Conditions for one versus two payout dates.

(1) Suppose that e�rt is strictly convex relative to L̄t , i.e.,
d2 L̄t

dt
dL̄t
dt

<�r for all t < T̂ , then an optimal

contract must specify a single payout date.
2) Suppose R> R̄ and L̄t is a step function, then an optimal contract generically specifies two
payout dates.

The number of payout dates depends on whether the information benefit of deferral, as captured
by incremental informativeness, is increasing faster or slower than deadweight impatience costs.
To build intuition consider, first, the case of a concave informativeness function L̄t (see top
left panel of Figure 2), which arises in environments where information arrives gradually over
time with decreasing incremental informativeness, e.g., because the agent’s initial action has a
decaying effect. Then as the growth rate of informativeness is decreasing while impatience costs
grow at a constant rate of �r, the first condition in Corollary 1 is immediately satisfied and
the cost of informativeness C is a strictly convex function (see top right panel of Figure 2). In
such decreasing-returns-to-deferral information environments, strictly increasing marginal costs
of informativeness C′ imply that it is cheapest to concentrate all pay at the earliest point in time
for which informativeness is sufficient to satisfy (IC). One may have conjectured that the optimal
contract with binding (PC) stipulates an incentive payment at T̂—the optimal payout date with
slack (PC) maximizing discounted informativeness—and an additional sufficiently high date−0
payment to satisfy (PC) at lowest possible impatience costs. As the informativeness level with
slack (PC), L̄T̂ , can be graphically identified by the point on

(
L̄t,e�rt

)
that minimizes the slope

of a ray through the origin (see green dotted line in the right panels of Figure 2),20 the graph
shows that this particular conjecture is wrong whenever C is strictly convex (compare the point
indicated by the “circle” to the “star” in top right panel).

In contrast, two payout dates are required in environments where incremental informativeness
increases strictly faster than impatience costs for some t, such that the first condition in Corollary 1

is violated. For instance, in the extreme case where d2L̄t
dt / dL̄t

dt >�r holds for all t, the implied
parametric curve (plotting e�rt against L̄t) is globally concave and it is generically optimal to
convexify by paying out at dates 0 and T̄ . Else, if informativeness grows faster than impatience
costs over some intervals and slower over others, the number of payout dates depends on the

19. See the proof of Lemma 1 for an explicit characterization.
20. This follows directly from the optimal timing condition with slack (PC) in (2). The minimum slope can be

interpreted as the shadow price on (IC), κIC .
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Figure 2

Convexification benefits and the number of payout dates

Notes: The upper panels plot a case with concave informativeness implying a strictly convex C (so that any given level of informativeness
is optimally achieved with one payout date). In the lower panels, informativeness is a step function such that contracts with two payout
dates are strictly optimal almost everywhere.

level of informativeness required by (IC) �k
R+kH

(compare, for instance, the contracts marked by
a circle and square in Figure 1). This intuition extends to economic settings where information
arrives only at discrete points in time, say via periodical performance reviews, such that the
second condition in Corollary 1 applies (see lower panel of Figure 2). Due to the lumpiness of
information arrival—L̄t only taking on a finite number of values (see right panel)—two payout
dates are generically needed to achieve the required average level of informativeness �k

R+kH
.21

Here, the potential payout dates TS and TL can be graphically identified as vertices of C.

Implications for the duration of pay. Now, regardless of whether there are one or two payout
dates, the lack of a rent-extraction motive with binding (PC) intuitively implies that it is optimal
to reduce deadweight impatience costs by paying the agent earlier than in the case with slack

(PC). More formally, the duration of the compensation contract,
∫ T̄

0 tdwt , measuring the weighted

21. A single payout date is only possible in the knife-edge case when L̄t = �k
R+kH

.
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average payout time, is shorter with binding than with slack (PC).22 In fact, Theorem 1 goes one
step further by establishing that with binding (PC) all payouts occur weakly before T̂ , the payout
date with slack (PC).23 These insights can now be readily extended to study the comparative
statics of pay duration with regards to the outside option.

Corollary 2 The duration of an optimal compensation package
∫

tdwt is decreasing in R and
increasing in �k.

The comparative statics in R and �k follow from the fact that higher pay and more informative
signals are substitutes for providing incentives to the agent. When an increase in the agent’s
binding outside option R exogenously raises the value of the compensation package to the
agent, say due to high competition for the agent’s talent, this substitutability implies that the
principal optimally shortens the duration of the compensation package, such as to reduce contract
informativeness (strictly so if (PC) binds). In contrast, if the agency problem gets more severe,
i.e., �k increases, then the principal relies on both more informative performance signals via
a longer pay duration and a larger compensation package. To the extent that poorer corporate
governance implies a more severe agency problem, e.g., as weaker monitoring increases the
benefits of shirking, our model, thus, predicts a substitutability of corporate governance and
optimal pay duration.

While the parameters R and �k primarily characterize the agent’s type or the difficulty of
the task at hand, comparative statics in the informativeness function L̄t should primarily capture
variation in the nature of information arrival across tasks or industries. To this end, we consider
a parametric family of informativeness functions to highlight the distinct effects of growth and
level of informativeness on the optimal timing of pay.

Corollary 3 Suppose L̄t = ιeφg(t) where ι,φ are strictly positive constants and eφg(t) is a
concave, differentiable function. Then, as long as the payout date is interior, it is
(i) strictly increasing in φ and independent of ι if (PC) is slack, and
(ii) strictly decreasing in φ and ι, otherwise.

Corollary 3 reveals how a binding participation constraint fundamentally alters the trade-offs
in setting payout times. When (PC) is slack, it is in the interest of the principal to defer as long
as the growth rate of informativeness φ exceeds �r. Thus, a higher φ induces the principal to
increase the payout date whereas the level parameter ι does not affect the principal’s trade-off. In
contrast, when (PC) binds, both a higher initial level and a higher growth rate allow the principal
to achieve the informativeness level of �k

R+kH
required by (IC) at an earlier date. Hence, the

principal responds by shortening the duration of the contract in response to increases in ι and
φ. Corollary 3 can be readily extended to settings in which the growth rate of informativeness
changes over time such as, e.g., in R&D intensive industries with long development periods
implying relevant informativeness growth only at later dates. Our analysis would then predict
firms in such industries to exhibit longer pay duration compared to traditional industries in which

22. This duration measure is analogous to the Macaulay duration which is standard in the fixed-income literature;
the weights of each payout date are determined by the present value of the associated payment divided by the agent’s
valuation of the compensation package (see e.g. Gopalan et al., 2014).

23. This is easily seen from the graphical construction of TS , TL , and T̂ above, together with the fact that (PC)
is binding if and only if the weighted average informativeness with binding (PC) is lower than with slack (PC), i.e.,
R> R̄⇔ �k

R+kH
< L̄T̂ (see also the proof of Theorem 1).
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signals with substantial informativeness are available early on (see evidence in Baranchuk et al.,
2014; Gopalan et al., 2014).

3.2. Payment bounds and security design

So far, the focus of our article was to provide a tractable characterization of the optimal timing
of pay. However, in cases where the optimal contract in Theorem 1 prescribes high rewards for
low-probability events, resource constraints such as limited liability on the side of the principal or
regulatory constraints, such as bonus caps, may become relevant (see also Jewitt et al., 2008). In
financial contracting applications, incorporating such resource constraints into our setting can be
viewed as a first step towards optimal security design under moral hazard with persistent effects,
providing a characterization of the optimal maturity structure of financial claims. Concretely, we
next consider optimal compensation design given the following upper bound on payments:

Condition 2 For each t, payments to the agent are bounded above, dbt ≤ b̄dt, with b̄>0.

Imposing an upper bound on the payment rate—next to agent limited liability which acts as a
lower bound—allows us to drop Condition 1. Hence, we can extend our analysis to information
settings where a solution to the original Problem 1 with bilateral risk neutrality does not exist,
including, in particular, the Brownian motion Example 3. While the bound b̄ may be time and/or
state dependent reflecting, e.g., varying financial resources of the principal or concerns about
performance manipulation by the agent (see e.g. Innes (1990) for a resulting monotonicity
constraint), we omit these possibilities for notational convenience.24 However, we do need to
assume that the payment bound is not too strict such that aH remains implementable.25

Proposition 1 Suppose that Condition 2 holds and the set of contracts strictly satisfying the
constraints is non-empty. Then, an optimal contract exists and stipulates pay at the maximum
rate b̄ if and only if the realization of the likelihood ratio, lt , satisfies

κIClt +κPC ≥e�rt, (7)

where κIC ≥0 and κPC ≥0 denote the shadow cost on (IC) and (PC), respectively.

The optimal contract with payment bounds is an intuitive extension of the contract obtained
in the baseline setting (see Theorem 1). Initially, consider the case with (PC) slack, i.e., κPC =0,
which occurs if the outside option is below a threshold R≤ R̄

(
b̄
)
. Since the principal can no

longer satisfy (IC) by relying exclusively on a reward for the history with the best impatience—
informativeness trade-off, he selects the next best alternatives according to the discounted
likelihood ratio e−�rt lt , up to the value of 1/κIC that results in satisfying (IC) (this can be
readily seen from (7) with κPC =0). This cost–benefit trade-off results both in a wider selection

24. Similarly, the setup can be readily extended to allow for time/state dependency in the lower payment bound
(instead of the constant zero lower bound imposed by agent limited liability) or a dependency of either payment bound on
endogenously chosen payouts. For instance, in some settings payouts to the agent are downward rigid such that pay has
to weakly increase over time. Imposing such a downward rigidity constraint then has the intuitive implication of a higher
optimal pay duration. This is because higher pay today requires higher future pay regardless of future performance. We
thank an anonymous referee for this insight.

25. Trivially, if b̄→0, then the principal cannot provide incentives. A sufficient condition for implementability is
that (IC) and (PC) are satisfied if the principal pays the maximum rate b̄dt at all dates t for all positive realizations of the
likelihood ratio.
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Figure 3

Payment bounds and payout dates for Examples 1 to 3

Notes: The graph plots the lower support, Lt , and upper support, L̄t , of the likelihood ratio distribution as a function of time as well as
one sample path lt for specifications of the three information environments in Examples 1 to 3. In all graphs, the red line refers to the
performance hurdle L̂t for payouts (see Corollary 4). If the realized performance is above the performance hurdle, i.e., in the grey-shaded
region, then the agent obtains the maximal payout rate b̄. The left panel corresponds to Example 1 with ρ =2/3, the middle panel to a
one-dimensional (j=1) specification of Example 2, where the arrival time distribution is exponential with parameters λH =1 and λL =2
given aH and aL respectively, while the right panel depicts Example 3 with ρ =1, σ =2, aH =3/2, and aL =−3/2.

of payout dates and payout states compared to the case without payment bounds (see grey-shaded
region in Figure 3 for our three examples with κPC =0). When (PC) binds so that κPC >0, this
payout region is extended even further. For both cases, we obtain the following robust prediction
for the pay-performance relation over time:

Corollary 4 The minimal likelihood ratio required for a strictly positive payout at date t is

given by L̂t = e�rt−κPC
κIC

and strictly increasing in t.

The increase in the performance hurdle over time (indicated by the red line in Figure 3) results
from the fact that the benefit of further deferral must outweigh the additional costs resulting
from relative impatience. To interpret the prediction of an increasing performance hurdle within
various economic applications, it is important to note that it applies to performance measured
in likelihood ratios units, not necessarily in terms of profits. Concretely, consider the Brownian
motion Example 3 with ρ =1 and suppose that a fund manager’s hidden action affects the drift
rate of the instantaneous fund return with aH =α+rP >aL =rP. That is, only under high effort
does the fund manager deliver an expected excess return (alpha) α above the market rate rP. Now,
as, for given t, the monotone likelihood ratio property (MLRP) is satisfied, a higher average excess

return, x̄t −rP, maps directly into a higher likelihood ratio, Lt =1−exp
(
−[x̄t −rP −α/2] α

σ 2/t

)
,

such that the agent gets paid if and only if x̄t −rP is sufficiently large.26 Furthermore, while in
this example the likelihood ratio associated with a given average excess return may both increase
as well as decrease over time,27 the hurdle that this performance measure has to clear in order to
trigger payments to the agent becomes from Corollary 4 unambiguously more demanding.

So far, we have framed the problem as one of optimal compensation design maximizing
the principal’s payoff. However, the results derived above directly extend to a standard security

26. Of course, MLRP is not satisfied in various other settings such as, e.g., Example 1.
27. Intuitively, since performance measurement based on more data is more precise, as captured by a higher signal-

to-noise ratio α/
(
σ 2/t

)
, observing the same average excess return at a later date results in a more favourable assessment

of the agent’s performance in likelihood ratio units whenever the outcome is sufficiently good, x̄t −rP >α/2, and a less
favourable one if the outcome is sufficiently bad, x̄t −rP <α/2. Here the cut-off α/2 corresponds to the average excess
return that is equally likely under aH and aL .

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/88/3/1253/5879998 by guest on 23 M

ay 2021



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[10:04 6/5/2021 OP-REST200050.tex] RESTUD: The Review of Economic Studies Page: 1269 1253–1278

HOFFMANN ET AL. ONLY TIME WILL TELL 1269

design setting where an entrepreneur subject to moral hazard seeks financing from a competitive
financial market (investors). The entrepreneur then chooses the dynamic structure of her and the
investors’ cash flows to maximize her expected payoff, where the optimal mix of securities and
their maturity structure can be obtained from the characterization of the optimal contract given
above by increasing the agent’s outside option R up to the point where the principal breaks even.28

4. CONTRACTING WITH RISK-AVERSE AGENT

While in the previous application to financial contracting payment bounds are exogenously given
by the resources available for distribution, they may also arise endogenously from the agent’s
risk aversion. As in Sannikov (2008), our analysis with a risk-averse agent assumes that the agent
cannot save privately and considers the following class of agent utility functions:

Condition 3 The agent’s utility over flow consumption u : [0,∞)→ [0,∞) is a strictly
increasing, strictly concave C2 function that satisfies u(0)=0 and u′(c)→0 as c→∞.

Condition 3 implies that optimal contracts will never specify lump-sum transfers, so that it is
without loss of generality to stipulate dbt =ctdt, where ct is the agent’s date-t consumption flow. It
is now also easy to see that the payment bound specification with dbt ≤ b̄dt can already be viewed
as an extreme case of risk aversion on the side of the agent (as in Plantin and Tirole (2018)):
her marginal utility from flow consumption at any given point in time drops from one to zero
when it exceeds some satiation point b̄. Due to this connection, the characterization of the optimal
contract under “standard” risk aversion can be thought of as a generalization of Proposition 1.

Proposition 2 Suppose the agent’s utility function satisfies Condition 3 and the set of contracts
strictly satisfying the constraints is non-empty. Then, there exist non-negative shadow prices, κIC

and κPC, such that ct >0 if κIClt +κPC > e�rt

u′(0) and ct =0, otherwise. Optimal interior consumption
solves

e�rt

u′(ct)
=κIClt +κPC. (8)

Compared to Proposition 1, the optimality condition in (8) now also reflects the inverse
marginal utility term 1

u′(ct)
(in addition to impatience costs e�rt).29 Here, 1

u′(ct)
can be interpreted

as the marginal cost of transferring utility to the agent at date t. Since the cost of transferring
utility is strictly convex under risk aversion, it is no longer optimal to pay at only a single (or two)
payout dates following the realization of the maximum likelihood ratio history. Instead, starting
from the maximal reward, which is specified for maximal performance, L̄t , at the “risk-neutral”
payout time of T∗ =argmaxt e−�rt

(
κICL̄t +κPC

)
, it is optimal for the principal to smooth agent

consumption across states and payout dates (see contour plot in Figure 4). Here, T∗ corresponds
to an optimal payout time in the risk-neutral setting for given shadow prices.30

If (PC) is slack, the concordant rent-extraction motive of the principal implies that smoothing
only occurs across states with positive likelihood ratios. Moreover, the size of rewards is calibrated

28. It would be interesting to enrich this setting by allowing payment bounds at a particular point in time t to also
depend on the endogenously chosen payouts (dividends, sale of equity stakes) at earlier points in time (cf. footnote 24).

29. As long as limited liability does not interfere, (8) implies that the inverse of the discounted marginal utility,
1/

(
e−�rtu′ (ct)

)
, is a martingale (since Lt is a martingale). Except for the additional impatience term, our principal-agent

model with persistence, thus, shares a key property with repeated-action models (see e.g. Rogerson, 1985).
30. Of course, the values of the shadow prices are themselves affected by risk aversion. Interestingly, when (PC) is

slack, then T∗ is given by the optimality condition in (2) regardless of the value of κIC .
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Figure 4

Contour plot of optimal contract under agent risk aversion

Notes: The graphs plots optimal compensation to the agent for the respective information environments of Figure 3. For Examples 1 and
2, the highest payment is made for some t >0, as sufficiently precise signal histories only become available after some time (see dark
red contour line). In contrast, for Example 3, the highest possible reward is stipulated instantaneously for l0+ →1 as the likelihood ratio
distribution has full support for all t >0.

such that the marginal cost of transferring utility is proportional to the discounted likelihood ratio.
In contrast, if (PC) binds, the risk-sharing motive implies that the agent may even be rewarded for
negative likelihood ratios, and the more so the higher the relevance of the participation constraint
as reflected in κPC .31

We are now ready to state the main result of this section, characterizing the general economic
features of the optimal contract arising from the agent’s risk aversion and relative impatience
as well as their interplay. For this, it is convenient to note that (8) defines for a given optimal
contract, i.e., fixed shadow values, a differentiable function c(t,l), mapping

[
0,T̄

]×(−∞,1] into
the reals such that ct =max{0,c(t,l)} for any realization of l feasible at a given t.32

Proposition 3 Let ARA(c)=− u′′(c)
u′(c) denote the absolute risk aversion coefficient, then the

sensitivity of payments at date-t with respect to performance, ∂c(t,l)
∂l , and time, ∂c(t,l)

∂t , satisfy
within the payment region:

∂c(t,l)

∂l
= 1

ARA(c)

1

l+ κPC
κIC

>0, (9)

∂c(t,l)

∂t
=− �r

ARA(c)
<0. (10)

The pay-performance sensitivity declines (increases) over time if the agent’s preferences exhibit

decreasing (increasing) absolute risk aversion, i.e., sgn
(

∂
∂t

∂c(t,l)
∂l

)
=sgn

(
ARA′(c)

)
.

Proposition 3 highlights the different roles of consumption smoothing (risk aversion) and relative
impatience for optimal contract design. Risk aversion implies that rewards are smoothed out
across likelihood ratio states for a given t with higher rewards for higher performance, ∂c

∂l >0, as
in Holmstrom (1979). Relative impatience implies that the performance hurdle is increasing over

31. In fact, once κPC is sufficiently high (and if the likelihood ratio Lt is bounded below for t = T̄ ), the limited
liability constraints never bind and are, hence, irrelevant for optimal contract design.

32. For example, in Example 1, the likelihood ratio can take on only two values at t =1 (corresponding to success
or failure). The contract then can still specify c(t,l) for l∈(−∞,1], even though this variable is only relevant for the two
levels of the likelihood ratio that can actually be reached.
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time, i.e., holding the likelihood ratio fixed, rewards are decreasing over time, ∂c
∂t <0.33 These

comparative statics can be directly inferred from Figure 4 which plots the optimal compensation
schedule as a contour plot across likelihood ratio states and time for our three leading Examples
1 to 3. Finally, the interplay of impatience and risk aversion implies that the pay-performance
sensitivity is decreasing over time (assuming decreasing absolute risk aversion). The intuition for
this result is as follows. A fall in consumption due to the passage of time, ∂c

∂t <0, makes the agent
effectively more risk averse (under decreasing absolute risk aversion), which, in turn, makes it
optimal to reduce the performance-sensitivity of rewards.

We next investigate further properties of the optimal contract for two commonly used utility
functions:

Corollary 5 If the agent has CARA utility, u(c)=1−e−ρc with ρ >0, then

ct = 1

ρ
(lnρ+ln(κIClt +κPC)−�rt).

If the agent has CRRA utility, u(c)= c1−γ

1−γ
with γ >0,34 then

ct =e− �r
γ

t
(κIClt +κPC)

1
γ .

Moreover, if γ = 1
2 and limited liability constraints never bind,35 we obtain:

κIC = �k

2
∫ T̄

0 e−(�r+rA)tEH
[
L2

t
]
dt

, and, κPC =(�r+rA)
R+kH

2
.

Thus, ceteris paribus, consumption decreases linearly over time for CARA and exponentially
under CRRA preferences, and the rate of decay is inversely related to the respective risk-aversion
parameter. Moreover, for the special case of square root utility (CRRA utility with γ = 1

2 ), it is
possible to solve explicitly for the shadow values κIC and κPC. In this setting, the relevant measure
of informativeness is then given by the variance of the likelihood ratio distribution, EH

[
L2

t
]
, which

is again an increasing function of time (cf. Observation 1) due to the martingale property of Lt .
In sum, the optimal timing of pay with a risk averse agent is also shaped by the trade-off

between the information benefit of deferral and the costs of transferring utility to the agent at
different points in time. However, due to risk-sharing and consumption smoothing concerns, the
value of the date-t information system to the principal may now depend on the entire likelihood
ratio distribution, not only on its upper support as in the risk-neutral benchmark model (see
Section 3). Despite this additional complexity, we still obtain clear-cut qualitative predictions
(see Propositions 2 and 3), which can be interpreted as intuitive extensions of Holmstrom (1979)
to a setting with dynamic information arrival. More concrete results regarding the “timing” of
bonus payouts require a quantification of the information benefits of deferral which depends on
the concrete form of the agent’s consumption risk and smoothing preferences. We obtain such
a quantification, e.g., for commonly used CRRA utility specifications in Corollary 5 as well as
within our risk-neutral benchmark framework.

33. One may think of the latter comparative static either as the local change in consumption at date t when no
further information arrives, or as comparing two signal histories of different length but the same likelihood ratio.

34. Technically, if γ >1, CRRA utility violates boundedness from below in Condition 3. However, an optimal
contract still exists as long as the date-T̄ likelihood ratio is bounded below.

35. Limited liability is slack for any (t,lt) combination if the likelihood ratio distribution at T̄ is bounded below
and R is sufficiently high.
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5. CONCLUSION

This article studies principal-agent settings in which the agent’s action has persistent effects.
The key contribution relative to the existing literature is that our approach allows us to obtain
a complete, tractable, and intuitive characterization of optimal contracts in general information
environments. We are able to accommodate good-news, bad-news, discrete, and continuous signal
processes within a unified framework by exploiting the martingale property of the likelihood ratio
process. The characterization of optimal contracts can be readily applied to various settings of
economic interest.

We initially follow the security design literature by considering a risk-neutral, relatively impa-
tient agent (see e.g. DeMarzo and Sannikov, 2006; Biais et al., 2007; DeMarzo and Fishman,
2007). The absence of risk-sharing considerations implies that the maximal likelihood ratio is
a sufficient statistic for the likelihood-ratio distribution at each date t, resulting in a precise and
simple metric of the information gain over time. Regardless of how information arrives over time,
optimal contracts feature a single payout date when the principal has a rent-extraction motive,
and at most two payout dates with a binding participation constraint (Theorem 1). The simple
form of the optimal contract allows for an intuitive understanding of the forces that determine
optimal deferral, broadly consistent with empirical evidence (see e.g. Gopalan et al., 2014).

The benefits of deferral, in terms of having access to a better information system, carry over to
the case with a risk-averse agent. However, risk aversion implies that optimal contracts stipulate
rewards for a larger selection of payout dates and states according to the following principle: first,
rewards are increasing in performance measured in likelihood ratio units. Relative impatience
then implies an increasing performance hurdle over time, i.e., holding performance fixed, rewards
are decreasing in time. Finally, the interaction of impatience and risk aversion implies that the
pay-performance sensitivity is decreasing over time for any utility function exhibiting decreasing
absolute risk aversion.

In future work, it would be interesting to extend our one-time action setup by allowing the
agent to take on subsequent actions. One can envision that these follow-up actions do not only
have persistent effects themselves, but are also state contingent: For example, the follow-up action
“restructuring and downsizing” may only be required after initial failure, or the action “develop
product” only available after a patent has been granted (see e.g. Green and Taylor (2016) for a
related setting). In such settings, for each history ht , one needs to account for all previously exerted
action choices and keep track of a vector of likelihood ratios. Optimal contract design now needs to
account for the correlation structure. Are outcomes that are indicative of taking the recommended
initial action also indicative of the recommended follow-up action (as in Sannikov (2014)) or
conflicting (as in Zhu (2018))? A rigorous analysis for general correlation structures should
shed light on possible complementarities and substitutabilities in dynamic incentive provision,
and, ultimately, whether the principal has an incentive to hire separate agents for different tasks.
Relatedly, it may also be interesting to study situations in which the agent observes performance
signals privately (as in Levitt and Snyder (1997)), and may manipulate the information observed
by the principal.36

Finally, it would be interesting to endogenize the information process by giving the principal
a more active role. In our model information arrives exogenously and costs arise only indirectly
when using (later) information for the purpose of incentive compensation. There are, of course,
settings in which information has to be generated by the principal, and acquiring additional

36. To make the problem interesting, manipulation could entail costly destruction of output (as in Innes (1990)),
inefficient diversion (as in DeMarzo and Fishman (2007)), or may only be observable with some delay (as in Varas
(2018)).
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information may be costly (see Plantin and Tirole, 2018). In such settings, next to designing the
optimal compensation contingent on the available information, the principal has to choose which
information to acquire.

APPENDIX

A. PROOFS

Lemma A.1 It is without loss of generality to restrict attention to compensation processes adapted to (FL
t )0≤t≤T̄ , the

filtration generated by Lt as defined in (1).

Proof of Lemma A.1. The result follows directly from an application of the Halmos–Savage theorem showing that for
each date t, Lt is a sufficient statistic for {xs}0≤s≤t with respect to a. Then, as the expected cost of transferring utility
is time separable, the result follows from a straightforward dynamic extension of the arguments in Holmstrom (1979)
(Proposition 3).

For completeness we spell out some more details. Employing a standard change of measure we can rewrite (IC) as

E
H

[∫ T̄

0
e−rAt

(
1− dP

L

dPH

)
dvt

]
≥�k,

which, by iterated expectations, is equivalent to (IC*):

E
H

[∫ T̄

0
e−rAt

(
1−E

H
[

dP
L

dPH

∣∣∣∣FX
t

])
dvt

]
=E

H

[∫ T̄

0
e−rAtLtdvt

]
≥�k. (A.1)

Now consider the compensation design Problem 1 with (IC) replaced by (A.1), first, for the case of a risk neutral
agent so that vt =bt . By inspection, there exists for each FX

t -adapted contract {bt} a corresponding FL
t -adapted contract{

b̃t

}
with b0− = b̃0− =0 and db̃t :=E

H
[
dbt |FL

t

]
leaving the constraints unaffected and resulting in the same wage costs.

To establish the result for the case of a risk-averse agent (where we impose Condition 3), it is convenient to rewrite
Problem 1 with the contingent discounted rate of agent utility νt :=e−rAtu(ct) as the choice variable:

W :=min
νt

E
H

[∫ T̄

0
e−rPtu−1(erAtνt)dt

]
s.t. (W)

E
H

[∫ T̄

0
νtdt

]
−kH ≥R, (PC)

E
H

[∫ T̄

0
Ltνtdt

]
≥�k, (IC)

νt ≥0 ∀t. (LL)

Then, there exists for each FX
t -adapted contract {νt} a corresponding FL

t -adapted contract {ν̃t} with ν̃t :=E
H

[
νt |FL

t

]
leaving the constraints unaffected but now even resulting in lower wage costs due to improved risk-sharing. Q.E.D.

Lemma A.2 For any weakly increasing function I : [0,T̄ ]→ [0,1], one can construct a signal process Xt such that the
associated informativeness function satisfies L̄t = I(t).

Proof of Lemma A.2. Note, first, that as I : [0,T̄ ]→ [0,1] is monotonically increasing, it is differentiable almost
everywhere and can have at most countably many discontinuities. We now provide, for given I(t), a construction of
an information system with L̄t = I(t) based on Examples 1 and 2. To do so, denote the set of times for which I has a jump
discontinuity by Td . Then consider the following information environment: the agent’s action determines the arrival rate
of a bad event, λt(a), with λt(aH )≤λt(aL) for all t ∈[0,T̄ ]. Further, at each t ∈Td there is a binary signal xt ∈{s,f } that is
drawn independently over time with the probability of success “s” at a particular t ∈Td depending on the agent’s action
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with pt(aH )>pt(aL). Then, it is easy to show that for each t, the history corresponding to the maximal likelihood ratio is
the one with the maximal possible number of successes and no bad event, i.e.,

L̄t =1−
exp

{
−∫ t

0 λs(aL)ds
}∏

s∈{i∈Td :i≤t}ps(aL)

exp
{
−∫ t

0 λs(aH )ds
}∏

s∈{i∈Td :i≤t}ps(aH )
.

It is now sufficient to note that λt(aH )≤λt(aL) and pt(aH )>pt(aL) can be chosen such that L̄t = I(t) for each t. In particular,
for t ∈Td one can choose λt(aH )=λt(aL) and pt(aH )/pt(aL)=1+dI(t)/(1−I(t)). At points of differentiability we choose
(λt(aL)−λt(aH ))= I ′(t)/(1−I(t)). Q.E.D.

Proof of Theorem 1. For convenience we restate the compensation design problem with bilateral risk neutrality using
(A.1)

W :=min
bt

E
H

[∫ T̄

0
e−rPtdbt

]
s.t. (W)

E
H

[∫ T̄

0
e−rAtdbt

]
−kH ≥R, (PC)

E
H

[∫ T̄

0
e−rAtLtdbt

]
≥�k, (IC)

dbt ≥0 ∀t. (LL)

We now first show that, given the conditions of the theorem, (IC) always binds.

Lemma A.3 If the agent is risk-neutral, the shadow value on (IC), κIC , is zero if and only if L̄0 ≥ �k
R+kH

.

Proof of Lemma A.3 From (PC) and (LL) together with differential discounting we have that W ≥R+kH . Hence,
we need to show that W =R+kH if and only if L̄0 ≥ �k

R+kH
. To show sufficiency, consider the contract that delivers

a compensation value of E
H

[∫ T̄
0 e−rAtdbt

]
=(R+kH ) to the agent and specifies a single contingent payment at t =0

following the realization of L0 = L̄0. Given Condition 1 such a contract exists with contingent bonus (R+kH )/P
H

(
L0 = L̄0

)
and it satisfies (PC) and (LL). Further, (IC) is satisfied if L̄0 ≥ �k

R+kH
. To show the necessary part, observe that any contract

with W =R+kH cannot feature any deferred pay due to differential discounting. Note further, that the contract that
provides strongest incentives with date-0 payments only is, from (IC), the one that makes the entire expected pay
E

H [db0] contingent on L̄0. Now suppose that L̄0 < �k
R+kH

, then the contract requires E
H [db0]>R+kH in order to satisfy

(IC), implying W >R+kH . Q.E.D.

The following Lemma characterizes the contingency of pay in optimal contracts:

Lemma A.4 An optimal contract stipulates rewards at date-t only if a signal history with maximum likelihood ratio
realizes, i.e., ∀t, dbt =0 for all l< L̄t a.s..

Proof of Lemma A.4. When L̄0 < �k
R+kH

we have from Lemma A.3 that κIC >0, implying W >R+kH . The proof then

is by contradiction. So assume that under the optimal contract there exists some t with dbt >0 for some l< L̄t . Then
if all such payments occur with probability zero they can be dropped leaving all constraints and compensation costs
unaffected. Else, there exists another feasible contract with dbt =0 for all l< L̄t that yields strictly lower compensation
costs, contradicting optimality of the candidate contract. To see this, assume, first, that (PC) is slack and make, for all t,
all payments contingent on the realization of l= L̄t holding E

H
[
e−rAtdbt

]
and, thus, total compensation costs constant.37

However, under this alternative contract (IC) is slack which allows to reduce dbt >0 at some t for which E
H [dbt]>0, thus,

reducing compensation costs. Second, assume that (PC) binds, which, together with κIC >0 implies that not all payments
can occur at t =0. Then, using the same variation of the original contract constructed above we again arrive at a solution
with slack (IC), which now allows to reduce dbt >0 at some t >0 for which E

H [dbt]>0 to (1−x)dbt with x∈(0,1)

37. The associated compensation process b exists from Condition 1.
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and add a lump-sum payment at t =0 of E
H

[
e−rAtxdbt

]
to still satisfy (PC). Again W is lower now due to differential

discounting. For the case where L̄0 = �k
R+kH

the result follows directly from the construction in Lemma A.3. Q.E.D.

It remains to characterize the optimal timing of pay. To do so, it is convenient to consider the following change of
variables: For any admissible process bt define

B :=E
H

[∫ T̄

0
e−rAtdbt

]
,

ws :=E
H

[∫ s

0
e−rAtdbt

]
/B.

Then using Lemma A.4 we can rewrite Problem 1 in terms of (B,w) as follows:

W :=min
B,wt

B
∫ T̄

0
e�rtdwt s.t. (W)

B≥R+kH , (PC)

B
∫ T̄

0
L̄tdwt ≥�k, (IC)

dwt ≥0 ∀t, (LL)

where wT̄ =∫ T̄
0 dwt =1. We will now characterize the optimal timing and size of pay in terms of (B,w). We can then

recover b via the transformation E
H [dbt]=erAtBdwt for each t ∈[

0,T̄
]

together with Lemma A.4. Such a process b exists
whenever Condition 1 holds and solves Problem 1.

Consider, first, the relaxed problem with slack (PC). Then, substituting out B from the objective function using (IC),
the compensation design problem reduces to

W =�kmin
wt

∫ T̄
0 e�rtdwt∫ T̄

0 L̄tdwt

. (A.2)

Now, consider the curve
(
L̄t,e�rt

)
parameterized by t ∈[

0,T̄
]
, and its convex hull tracing out the set of(∫ T̄

0 L̄tdwt,
∫ T̄

0 e�rtdwt

)
achievable with any admissible weighting (wt)

T̄
t=0. Using the definition of the lower hull C

(see main text and, for a graphical illustration, Figures 1 and 2) and defining I :=∫ T̄
0 L̄tdwt , (A.2) can be rewritten as

W =�k min
I∈[

L̄0,L̄T̄

] C(I)

I
. (A.3)

For any given I , C(I)
I , graphically corresponds to the slope of a ray through the origin and the respective point on C.

The objective is, thus, to minimize the slope (see slope of green line in right panels of Figure 2). If there exists a unique
solution, then the minimizer defines an extreme point on C which, by definition of an extreme point (cf., Krein and Milman,

1940), can be achieved with a single payout at date T̂ ,
(

L̄T̂ ,e�rT̂
)

(see e.g. the left panels of Figure 2). In the case of

multiple global minimizers of C(I)
I , both the smallest and the largest minimizer must define an extreme point. Disregarding

(PC), any minimizer (or a combination thereof) solves the principal’s relaxed problem. Now, since T̂ features the lowest
informativeness among the set of minimizers, the associated compensation value to the agent �k/L̄T̂ is highest. Hence,
a necessary and sufficient condition for PC to be slack is that R≤ R̄.

The proof of statement 2 in the Theorem is in the main text. It just remains to show that T̂ is an upper bound on
payment dates with binding (PC). To see this, note first that (PC) binds, R> R̄, if and only if �k

R+kH
< L̄T̂ , where �k

R+kH
is the

weighted average informativeness required by (IC) for binding (PC). If the optimal contract with binding (PC) features a
single payment at T1, the result follows directly from L̄T1 = �k

R+kH
< L̄T̂ together with the fact that L̄t is increasing (see e.g.

the upper panels of Figure 2). In the remaining case in which two payout dates TS <TL are optimal, it follows from the fact
that TS,TL and T̂ must all define extreme points (see e.g. Figure 1 and the lower panels of Figure 2). If TL were greater than

T̂ , i.e., L̄TL > L̄T̂ > �k
R+kH

=wSL̄TS +(1−wS)L̄TL , then
(

L̄T̂ ,e�rT̂
)

could not be an extreme point. Contradiction. Q.E.D.

Proof of Lemma 1. It remains to derive expression (6). To see this, suppose to the contrary that for any given TS there

exists a T ′ >TS such that
(
L̄T ′ −L̄TS

)
/
(

e�rT ′ −e�rTS

)
>

(
L̄TL −L̄TS

)
/
(
e�rTL −e�rTS

)
. Then, if L̄T ′ > �k

R+kH
, there exists a
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w′
S ∈(0,1) such that w′

SL̄TS +(
1−w′

S

)
L̄T ′ = �k

R+kH
and w′

Se�rTS +(
1−w′

S

)
e�rT ′

<wSe�rTS +(1−wS)e�rTL contradicting

optimality of payouts at TS and TL . Similarly, if L̄T ′ ≤ �k
R+kH

there exists a w′
S ∈ [0,1), such that w′

SL̄T ′ +(
1−w′

S

)
L̄TL = �k

R+kH

and w′
Se�rT ′ +(

1−w′
S

)
e�rTL <wSe�rTS +(1−wS)e�rTL again contradicting optimality.

For completeness, we further state the explicit characterization of dbTS and dbTL :

dbTS =(R+kH )wS
erATS

PH
(

LTS =L̄TS

) if LTS = L̄TS ,

dbTL =(R+kH )(1−wS) erATL

PH
(

LTL =L̄TL

) if LTL = L̄TL ,

dbt =0 else.

Q.E.D.

Proof of Corollary 1. To show statement 1, we restrict attention to twice differentiable functions L̄t . Strict convexity of
C (over the domain for which (PC) binds) follows directly from standard arguments, see e.g. Gollier (2004) (Chapter 2,
Proposition 2). Statement 1 then follows directly from Lemma 1 together with Theorem 1.

To show statement 2, it is sufficient to note that by definition L̄t takes on only countably many values such that
L̄t = �k

R+kH
has no solution t for almost all �k

R+kH
∈(

0,L̄T̂

)
. Since, R> R̄ implies that (PC) binds, the result then follows

from Lemma 1. Q.E.D.

Proof of Corollary 2. From Theorem 1, these comparative statics hold trivially if L̄T̂ < �k
R+kH

so that (PC) is slack. In this

regime 1, the duration T̂ does not depend on R and �k. When L̄T̂ ≥ �k
R+kH

> L̄0, (PC) and (IC) bind (regime 2), and the result

follows directly from
∫ T̄

0 L̄tdwt = �k
R+kH

, which is decreasing in R and increasing in �k, together with Lemma 1. Finally,

when L̄T̂ ≥ L̄0 ≥ �k
R+kH

, Lemma A.3 shows that (IC) is slack (regime 3) and the duration is equal to zero independently of
R and �k. Now note that, as R increases or �k decreases, we either stay within a given regime or move from regime 1
to regime 2 to regime 3 and the result follows. Q.E.D.

Proof of Corollary 3. Given differentiability of L̄t and the assumption of an interior payout date, the optimal payment

date with slack (PC) is characterized by (3), i.e., g′
(

T̂
)
= �r

φ
, and the first statement follows. Next, note that concavity

of L̄t implies strict convexity of C such that with binding (PC) Lemma 1 implies a single payout at date T1 satisfying
L̄T1 = �k

R+kH
. The second statement then follows directly as for each t, informativeness L̄t is strictly increasing in ι and φ.

Q.E.D.

Proof of Proposition 1. First, note that Problem 1 with a risk-neutral agent and payment bounds (PB) as given in
Condition 2 is a linear programming problem with finite value. Existence of an optimal contract then follows directly
from the assumption that the set of contracts satisfying the constraint set is non-empty. Let mt(l) denote the flow payment
at time t following realization of l∈Lt where Lt denotes the support of the date-t likelihood ratio distribution. Then,
using Lemma A.1, the Lagrangian can be written as follows

L=
∫ T̄

0

∫
Lt

e−rAt [e�rt −κIC l−κPC −(
κ t

LL(l)−κ t
PB(l)

)]
mt(l)dFt(l)dt

+κIC�k+κPC (kH +R),

where Ft (l)=P
H (Lt ≤ l) denotes the ex ante distribution over date-t likelihood ratios if the agent chooses action aH and

κIC ,κPC ,κ t
LL(l),κ t

PB(l)≥0 are the Lagrange multipliers on the respective constraints. Since L is linear in mt(l) for all (t,l),
we almost everywhere either have mt(l)=0 (with κ t

LL(l)≥0 and κ t
PB(l)=0) or mt(l)= b̄ (with κ t

LL(l)=0 and κ t
PB(l)≥0).

Now from ∂L/∂mt(l)=0 we get
e�rt −κIC l−κPC =κ t

LL(l)−κ t
PB(l),

such that mt(l)= b̄ if and only if e�rt −κIC l−κPC ≤0. The case with slack (PC) then corresponds to κPC =0 and

applies whenever R≥ R̄(b̄), where the cut-off value is given by R̄(b̄) :=∫ T̄
0

∫
L̃t (b̄) e−rAt b̄dFt(l)dt−kH with L̃t(b̄) :={

l∈Lt :e−�rt l≥ 1
κ̃IC (b̄)

}
for each t and κ̃IC (b̄) denoting the Lagrange multiplier on (IC) in the solution to the compensation

design problem with (PB) but absent (PC). Q.E.D.

Proof of Proposition 2. Consider the compensation design problem with the same change of variables as in Lemma A.1,
i.e., νt =e−rAtu(ct). This ensures that we have a convex programming problem. The corresponding Lagrangian can then
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be written as

L=
∫ T̄

0

∫
Lt

[
e−rPtu−1(erAtνt(l))−κIC lνt(l)−κPCνt(l)−κ t

LL(l)νt(l)
]

dFt(l)dt

+κIC�k+κPC (kH +R),

where κIC ,κPC ,κ t
LL(l)≥0 denote the Lagrange multipliers on the respective constraints. Optimizing point-wise with

respect to νt(l), we obtain that
e�rt

u′(ct(l))
−κIC l−κPC =κ t

LL(l), (A.4)

for almost every (t,l). First note that for given (t,l) the left-hand side of (A.4) is bounded above by e�rt

u′(0) −κIC l−κPC

due to strict concavity of u and u′ (0)>0 (see Condition 3). Hence, the limited liability constraint binds, κ t
LL(l)>0, if and

only if e�rt

u′(0) −κIC l−κPC ≥0. Otherwise, (A.4) has a solution ct(l)>0, where ct(l) is bounded above since u′ (c)→0 as
c→∞ (see Condition 3). Existence of an optimal contract follows from the assumption that the set of contracts strictly
satisfying the constraints is non-empty. Q.E.D.

Proof of Proposition 3. The expressions in (9) and (10) follow from implicit differentiation of (8) holding fixed the
Lagrange multipliers at their optimal level. Then the cross derivative is given by

∂2c

∂t∂l
=− ∂c

∂t

∂c

∂l

ARA′(c)

ARA(c)
,

which has same sign as ARA′(c). Q.E.D.
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